Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms12904
Title: Oscillating edge states in one-dimensional MoS2 nanowires
Authors: Xu H. 
Liu S.
Ding Z. 
Tan S.J.R. 
Yam K.M.
Bao Y. 
Nai C.T. 
Ng M.-F. 
Lu J. 
Zhang C. 
Loh K.P. 
Keywords: nanomaterial
nanoribbon
nanowire
sulfur
array
inorganic compound
nanoparticle
nanotechnology
one-dimensional modeling
quantum mechanics
topology
Article
atomic force microscopy
chemical binding
conductance
density functional theory
electric potential
electron energy loss spectroscopy
evaporation
frequency modulation
oscillation
scanning tunneling microscopy
steady state
surface property
temperature sensitivity
X ray photoelectron spectroscopy
Issue Date: 2016
Publisher: Nature Publishing Group
Citation: Xu H., Liu S., Ding Z., Tan S.J.R., Yam K.M., Bao Y., Nai C.T., Ng M.-F., Lu J., Zhang C., Loh K.P. (2016). Oscillating edge states in one-dimensional MoS2 nanowires. Nature Communications 7 : 12904. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms12904
Abstract: Reducing the dimensionality of transition metal dichalcogenides to one dimension opens it to structural and electronic modulation related to charge density wave and quantum correlation effects arising from edge states. The greater flexibility of a molecular scale nanowire allows a strain-imposing substrate to exert structural and electronic modulation on it, leading to an interplay between the curvature-induced influences and intrinsic ground-state topology. Herein, the templated growth of MoS2 nanowire arrays consisting of the smallest stoichiometric MoS2 building blocks is investigated using scanning tunnelling microscopy and non-contact atomic force microscopy. Our results show that lattice strain imposed on a nanowire causes the energy of the edge states to oscillate periodically along its length in phase with the period of the substrate topographical modulation. This periodic oscillation vanishes when individual MoS2 nanowires join to form a wider nanoribbon, revealing that the strain-induced modulation depends on in-plane rigidity, which increases with system size. © The Author(s) 2016.
Source Title: Nature Communications
URI: https://scholarbank.nus.edu.sg/handle/10635/174929
ISSN: 20411723
DOI: 10.1038/ncomms12904
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms12904.pdf2.14 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

32
checked on Apr 7, 2021

Page view(s)

50
checked on Apr 9, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.