Please use this identifier to cite or link to this item: https://doi.org/10.1038/ncomms13278
DC FieldValue
dc.titleUnusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers
dc.contributor.authorYu, W.J
dc.contributor.authorVu, Q.A
dc.contributor.authorOh, H
dc.contributor.authorNam, H.G
dc.contributor.authorZhou, H
dc.contributor.authorCha, S
dc.contributor.authorKim, J.-Y
dc.contributor.authorCarvalho, A
dc.contributor.authorJeong, M
dc.contributor.authorChoi, H
dc.contributor.authorCastro Neto, A.H
dc.contributor.authorLee, Y.H
dc.contributor.authorDuan, X
dc.date.accessioned2020-09-09T01:24:51Z
dc.date.available2020-09-09T01:24:51Z
dc.date.issued2016
dc.identifier.citationYu, W.J, Vu, Q.A, Oh, H, Nam, H.G, Zhou, H, Cha, S, Kim, J.-Y, Carvalho, A, Jeong, M, Choi, H, Castro Neto, A.H, Lee, Y.H, Duan, X (2016). Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nature Communications 7 : 13278. ScholarBank@NUS Repository. https://doi.org/10.1038/ncomms13278
dc.identifier.issn20411723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174920
dc.description.abstractTwo-dimensional layered transition-metal dichalcogenides have attracted considerable interest for their unique layer-number-dependent properties. In particular, vertical integration of these two-dimensional crystals to form van der Waals heterostructures can open up a new dimension for the design of functional electronic and optoelectronic devices. Here we report the layer-number-dependent photocurrent generation in graphene/MoS 2 /graphene heterostructures by creating a device with two distinct regions containing one-layer and seven-layer MoS 2 to exclude other extrinsic factors. Photoresponse studies reveal that photoresponsivity in one-layer MoS 2 is surprisingly higher than that in seven-layer MoS 2 by seven times. Spectral-dependent studies further show that the internal quantum efficiency in one-layer MoS 2 can reach a maximum of 65%, far higher than the 7% in seven-layer MoS 2. Our theoretical modelling shows that asymmetric potential barriers in the top and bottom interfaces of the graphene/one-layer MoS 2 /graphene heterojunction enable asymmetric carrier tunnelling, to generate usually high photoresponsivity in one-layer MoS 2 device. © The Author(s) 2016.
dc.publisherNature Publishing Group
dc.sourceUnpaywall 20200831
dc.subjectgraphene
dc.subjectmolybdenum
dc.subjectcarbon
dc.subjectdesign method
dc.subjectelectronic equipment
dc.subjectextraction method
dc.subjectspectral analysis
dc.subjecttheoretical study
dc.subjectArticle
dc.subjectchemical structure
dc.subjectelectric conductivity
dc.subjectelectric current
dc.subjectelectric potential
dc.subjectelectron
dc.subjectphoton
dc.subjectphotoreactivity
dc.subjectquantum mechanics
dc.subjectsemiconductor
dc.subjectshort circuit current
dc.subjecttheoretical model
dc.subjectvan der Waal heterostructure
dc.typeArticle
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentDEPT OF PHYSICS
dc.description.doi10.1038/ncomms13278
dc.description.sourcetitleNature Communications
dc.description.volume7
dc.description.page13278
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_ncomms13278.pdf1.88 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

105
checked on Sep 22, 2022

Page view(s)

174
checked on Sep 22, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.