Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-04079-x
Title: Blackbody radiation shift assessment for a lutetium ion clock
Authors: Arnold K.J. 
Kaewuam R.
Roy A. 
Tan T.R. 
Barrett M.D. 
Keywords: lutetium
accuracy assessment
ion
lutetium
polarization
radiative transfer
resonance
Article
mathematical analysis
mathematical model
measurement accuracy
radiation
Issue Date: 2018
Publisher: Nature Publishing Group
Citation: Arnold K.J., Kaewuam R., Roy A., Tan T.R., Barrett M.D. (2018). Blackbody radiation shift assessment for a lutetium ion clock. Nature Communications 9 (1) : 1650. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-04079-x
Abstract: The accuracy of state-of-the-art atomic clocks is derived from the insensitivity of narrow optical atomic resonances to environmental perturbations. Two such resonances in singly ionized lutetium have been identified with potentially lower sensitivities compared to other clock candidates. Here we report measurement of the most significant unknown atomic property of both transitions, the static differential scalar polarizability. From this, the fractional blackbody radiation shift for one of the transitions is found to be -1.36(9) × 10 -18 at 300 K, the lowest of any established optical atomic clock. In consideration of leading systematic effects common to all ion clocks, both transitions compare favorably to the most accurate ion-based clocks reported to date. This work firmly establishes Lu + as a promising candidate for a future generation of more accurate optical atomic clocks. © 2018 The Author(s).
Source Title: Nature Communications
URI: https://scholarbank.nus.edu.sg/handle/10635/174225
ISSN: 2041-1723
DOI: 10.1038/s41467-018-04079-x
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-04079-x.pdf668.37 kBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

25
checked on Mar 3, 2021

Page view(s)

32
checked on Mar 5, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.