Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-018-04233-5
Title: Ambipolar ferromagnetism by electrostatic doping of a manganite
Authors: Zheng L.M.
Renshaw Wang X.
Lü W.M.
Li C.J. 
Paudel T.R.
Liu Z.Q.
Huang Z. 
Zeng S.W. 
Han K. 
Chen Z.H.
Qiu X.P.
Li M.S.
Yang S.
Yang B.
Chisholm M.F.
Martin L.W.
Pennycook S.J. 
Tsymbal E.Y.
Coey J.M.D.
Cao W.W.
Keywords: ferromagnetic material
ionic liquid
manganite
unclassified drug
asymmetry
complexity
electrical property
electron
functional role
ion exchange
ionic liquid
oxide group
ambipolar ferromagnetism
Article
atomic force microscopy
calculation
density functional theory
electron energy loss spectroscopy
magnetism
oxygen tension
polarization
scanning transmission electron microscopy
static electricity
surface property
Issue Date: 2018
Publisher: Nature Publishing Group
Citation: Zheng L.M., Renshaw Wang X., Lü W.M., Li C.J., Paudel T.R., Liu Z.Q., Huang Z., Zeng S.W., Han K., Chen Z.H., Qiu X.P., Li M.S., Yang S., Yang B., Chisholm M.F., Martin L.W., Pennycook S.J., Tsymbal E.Y., Coey J.M.D., Cao W.W. (2018). Ambipolar ferromagnetism by electrostatic doping of a manganite. Nature Communications 9 (1) : 1897. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-018-04233-5
Abstract: Complex-oxide materials exhibit physical properties that involve the interplay of charge and spin degrees of freedom. However, an ambipolar oxide that is able to exhibit both electron-doped and hole-doped ferromagnetism in the same material has proved elusive. Here we report ambipolar ferromagnetism in LaMnO3, with electron-hole asymmetry of the ferromagnetic order. Starting from an undoped atomically thin LaMnO3 film, we electrostatically dope the material with electrons or holes according to the polarity of a voltage applied across an ionic liquid gate. Magnetotransport characterization reveals that an increase of either electron-doping or hole-doping induced ferromagnetic order in this antiferromagnetic compound, and leads to an insulator-to-metal transition with colossal magnetoresistance showing electron-hole asymmetry. These findings are supported by density functional theory calculations, showing that strengthening of the inter-plane ferromagnetic exchange interaction is the origin of the ambipolar ferromagnetism. The result raises the prospect of exploiting ambipolar magnetic functionality in strongly correlated electron systems. © 2018 The Author(s).
Source Title: Nature Communications
URI: https://scholarbank.nus.edu.sg/handle/10635/174221
ISSN: 2041-1723
DOI: 10.1038/s41467-018-04233-5
Appears in Collections:Elements
Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41467-018-04233-5.pdf2.06 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.