Please use this identifier to cite or link to this item: https://doi.org/10.1038/srep19672
DC FieldValue
dc.titleTopography induces differential sensitivity on cancer cell proliferation via Rho-ROCK-Myosin contractility
dc.contributor.authorChaudhuri, P.K
dc.contributor.authorPan, C.Q
dc.contributor.authorLow, B.C
dc.contributor.authorLim, C.T
dc.date.accessioned2020-09-02T07:00:43Z
dc.date.available2020-09-02T07:00:43Z
dc.date.issued2016
dc.identifier.citationChaudhuri, P.K, Pan, C.Q, Low, B.C, Lim, C.T (2016). Topography induces differential sensitivity on cancer cell proliferation via Rho-ROCK-Myosin contractility. Scientific Reports 6 : 19672. ScholarBank@NUS Repository. https://doi.org/10.1038/srep19672
dc.identifier.issn20452322
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/174030
dc.description.abstractAlthough the role of stiffness on proliferative response of cancer cells has been well studied, little is known about the effect of topographic cues in guiding cancer cell proliferation. Here, we examined the effect of topographic cues on cancer cell proliferation using micron scale topographic features and observed that anisotropic features like microgratings at specific dimension could reduce proliferation of non-cancer breast epithelial cells (MCF-10A) but not that for malignant breast cancer cells (MDA-MB-231 and MCF-7). However, isotropic features such as micropillars did not affect proliferation of MCF-10A, indicating that the anisotropic environmental cues are essential for this process. Interestingly, acto-myosin contraction inhibitory drugs, Y-27632 and blebbistatin prevented micrograting-mediated inhibition on proliferation. Here, we propose the concept of Mechanically-Induced Dormancy (MID) where topographic cues could activate Rho-ROCK-Myosin signaling to suppress non-cancerous cells proliferation whereas malignant cells are resistant to this inhibitory barrier and therefore continue uncontrolled proliferation.
dc.sourceUnpaywall 20200831
dc.subjectcollagen
dc.subjectmyosin
dc.subjectRho guanine nucleotide binding protein
dc.subjectRho kinase
dc.subjectanimal
dc.subjectbovine
dc.subjectbreast tumor
dc.subjectcell motion
dc.subjectcell proliferation
dc.subjectchemistry
dc.subjectdrug effects
dc.subjectepithelium cell
dc.subjectextracellular matrix
dc.subjectfemale
dc.subjecthuman
dc.subjectmetabolism
dc.subjectmetastasis
dc.subjectpathology
dc.subjectsignal transduction
dc.subjecttumor cell line
dc.subjectAnimals
dc.subjectBreast Neoplasms
dc.subjectCattle
dc.subjectCell Line, Tumor
dc.subjectCell Movement
dc.subjectCell Proliferation
dc.subjectCollagen
dc.subjectEpithelial Cells
dc.subjectExtracellular Matrix
dc.subjectFemale
dc.subjectHumans
dc.subjectMyosins
dc.subjectNeoplasm Metastasis
dc.subjectrho GTP-Binding Proteins
dc.subjectrho-Associated Kinases
dc.subjectSignal Transduction
dc.typeArticle
dc.contributor.departmentMECHANOBIOLOGY INSTITUTE
dc.contributor.departmentBIOLOGY (NU)
dc.contributor.departmentBIOENGINEERING
dc.description.doi10.1038/srep19672
dc.description.sourcetitleScientific Reports
dc.description.volume6
dc.description.page19672
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_srep19672.pdf3.02 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

26
checked on Dec 4, 2020

Page view(s)

21
checked on Dec 4, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.