Please use this identifier to cite or link to this item: https://doi.org/10.1039/c8mh00946e
DC FieldValue
dc.titleIdentifying glioblastoma margins using dual-targeted organic nanoparticles for efficient in vivo fluorescence image-guided photothermal therapy
dc.contributor.authorCAI XIAOLEI
dc.contributor.authorAishwarya Bandla
dc.contributor.authorCHAN KIM CHUAN
dc.contributor.authorGAYATHIRI MAGARAJAH
dc.contributor.authorLIAO LUN-DE
dc.contributor.authorTeh, Daniel Boon Loong
dc.contributor.authorKennedy, Brian K
dc.contributor.authorThakor, Nitish V
dc.contributor.authorLIU BIN
dc.date.accessioned2020-06-24T09:55:36Z
dc.date.available2020-06-24T09:55:36Z
dc.date.issued2019-02-01
dc.identifier.citationCAI XIAOLEI, Aishwarya Bandla, CHAN KIM CHUAN, GAYATHIRI MAGARAJAH, LIAO LUN-DE, Teh, Daniel Boon Loong, Kennedy, Brian K, Thakor, Nitish V, LIU BIN (2019-02-01). Identifying glioblastoma margins using dual-targeted organic nanoparticles for efficient in vivo fluorescence image-guided photothermal therapy. Materials Horizons 6 (2) : 311-317. ScholarBank@NUS Repository. https://doi.org/10.1039/c8mh00946e
dc.identifier.issn2051-6347
dc.identifier.issn2051-6355
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/170701
dc.description.abstractCurrent therapeutics for glioblastoma multiforme (GBM) treatment are unsatisfactory due to their limited ability to control the progression from tumour margins. In this work, organic nanoparticles (NPs) are synthesized by co-encapsulating a fluorogen with aggregation-induced emission to generate a bright red emission for imaging and a semiconducting polymer to offer NIR absorption for photothermal therapy. The NPs are further modified with different ratios of two targeting ligands, folate and cRGD peptide. The best ratio that performs specific and efficient GBM targeting is screened out through in vitro and ex vivo fluorescence imaging analysis. The NPs with an FA to cRGD ratio of 25 : 75 exhibit superior ability to target GBM cells in vitro and also show efficient accumulation at the GBM margin and in the tumour interior after in vivo administration. The progression of GBM can be greatly suppressed through photothermal therapy, which provides a simple but promising strategy for GBM treatment.
dc.language.isoen
dc.publisherRoyal Society of Chemistry (RSC)
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Multidisciplinary
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectBLOOD-BRAIN-BARRIER
dc.subjectMULTIFORME
dc.subjectSURVIVAL
dc.subjectTEMOZOLOMIDE
dc.subjectGRAPHENE
dc.typeArticle
dc.date.updated2020-06-11T07:33:25Z
dc.contributor.departmentDEPT OF CHEMICAL & BIOMOLECULAR ENGG
dc.contributor.departmentLIFE SCIENCES INSTITUTE
dc.description.doi10.1039/c8mh00946e
dc.description.sourcetitleMaterials Horizons
dc.description.volume6
dc.description.issue2
dc.description.page311-317
dc.published.statePublished
dc.grant.idR279-000-444-281
dc.grant.idR279-000-483-281
dc.grant.idR-719-000-018-281
dc.grant.idR279-000-433-281
dc.grant.fundingagencyNational Research Foundation Singapore
dc.grant.fundingagencyNational University of Singapore
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
MH-CXL.pdfAccepted version524.2 kBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.