Please use this identifier to cite or link to this item: https://doi.org/10.1021/acssuschemeng.9b00062
DC FieldValue
dc.titlePore Size Reduction in Zirconium Metal-Organic Frameworks for Ethylene/Ethane Separation
dc.contributor.authorWang, Yuxiang
dc.contributor.authorYuan, Shuai
dc.contributor.authorHu, Zhigang
dc.contributor.authorKundu, Tanay
dc.contributor.authorZhang, Jian
dc.contributor.authorPeh, Shing Bo
dc.contributor.authorCheng, Youdong
dc.contributor.authorDong, Jinqiao
dc.contributor.authorYuan, Daqiang
dc.contributor.authorZhou, Hong-Cai
dc.contributor.authorZhao, Dan
dc.date.accessioned2020-06-17T01:59:57Z
dc.date.available2020-06-17T01:59:57Z
dc.date.issued2019-04-01
dc.identifier.citationWang, Yuxiang, Yuan, Shuai, Hu, Zhigang, Kundu, Tanay, Zhang, Jian, Peh, Shing Bo, Cheng, Youdong, Dong, Jinqiao, Yuan, Daqiang, Zhou, Hong-Cai, Zhao, Dan (2019-04-01). Pore Size Reduction in Zirconium Metal-Organic Frameworks for Ethylene/Ethane Separation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 7 (7) : 7118-7126. ScholarBank@NUS Repository. https://doi.org/10.1021/acssuschemeng.9b00062
dc.identifier.issn21680485
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/169833
dc.description.abstract© 2019 American Chemical Society. Engineering metal-organic frameworks (MOFs) for adsorptive ethylene/ethane separation has shown bright prospects for replacing the energy-intensive cryogenic distillation process. Herein, we demonstrate that pore size reduction in zirconium metal-organic frameworks (Zr-MOFs) can significantly improve their ethylene/ethane separation performance. Two Zr-MOFs based on the acetylenedicarboxylate ligand, UiO-66-ADC and NUS-36, are successfully synthesized. Different from UiO-66-ADC with an fcu topology, NUS-36 possesses a bcu network constructed from 8-connected Zr clusters and organic linkers, leading to ultramicropores smaller than 3.6 Å. NUS-36 selectively adsorbs C 2 H 4 over C 2 H 6 with a selectivity of 4.1 based on idea adsorbed solution theory (IAST) for an equimolar C 2 H 4 /C 2 H 6 mixture at 298 K and 1 bar, contrasting the C 2 H 6 /C 2 H 4 selectivity of 1.8 in UiO-66-ADC under the same conditions. The enhanced C 2 H 4 affinity of NUS-36 is attributed to the synergistic enthalpic and entropic effects on gas sorption which are triggered by the congested pore environment. This study demonstrates the effectiveness of the pore size reduction strategy for the design and engineering of suitable MOFs for demanding gas separation processes.
dc.language.isoen
dc.publisherAMERICAN CHEMICAL SOCIETY
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Multidisciplinary
dc.subjectGreen & Sustainable Science & Technology
dc.subjectEngineering, Chemical
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectEngineering
dc.subjectZr metal-organic frameworks
dc.subjectUltramicropores
dc.subjectPore size engineering
dc.subjectEthylene/ethane adsorptive separation
dc.subjectSynergistic enthalpic and entropic effects
dc.subjectHIGHLY SELECTIVE ADSORPTION
dc.subjectOLEFIN-PARAFFIN SEPARATION
dc.subjectETHANE
dc.subjectNANOSHEETS
dc.subjectPROPYLENE
dc.subjectMEMBRANES
dc.subjectFE
dc.subjectNI
dc.subjectCO
dc.typeArticle
dc.date.updated2020-06-08T10:25:21Z
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.description.doi10.1021/acssuschemeng.9b00062
dc.description.sourcetitleACS SUSTAINABLE CHEMISTRY & ENGINEERING
dc.description.volume7
dc.description.issue7
dc.description.page7118-7126
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2_Pore Size Reduction in Zirconium Metal-Organic Frameworks for Ethylene Ethane Separation.docx1.67 MBMicrosoft Word XML

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.