Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsaem.8b01923
DC FieldValue
dc.titleJanus Electrocatalysts Containing MOF-Derived Carbon Networks and NiFe-LDH Nanoplates for Rechargeable Zinc-Air Batteries
dc.contributor.authorQian, Yuhong
dc.contributor.authorAn, Tao
dc.contributor.authorSarnello, Erik
dc.contributor.authorLiu, Zhaolin
dc.contributor.authorLi, Tao
dc.contributor.authorZhao, Dan
dc.date.accessioned2020-06-09T08:12:50Z
dc.date.available2020-06-09T08:12:50Z
dc.date.issued2019-03-01
dc.identifier.citationQian, Yuhong, An, Tao, Sarnello, Erik, Liu, Zhaolin, Li, Tao, Zhao, Dan (2019-03-01). Janus Electrocatalysts Containing MOF-Derived Carbon Networks and NiFe-LDH Nanoplates for Rechargeable Zinc-Air Batteries. ACS APPLIED ENERGY MATERIALS 2 (3) : 1784-1792. ScholarBank@NUS Repository. https://doi.org/10.1021/acsaem.8b01923
dc.identifier.issn25740962
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/169560
dc.description.abstract© 2019 American Chemical Society. The lack of efficient and durable bifunctional cathodic catalysts largely prevents the wide-scale applications of rechargeable Zn-air batteries (RZABs). Herein, we report a bifunctional, durable, and noble-metal-free electrocatalyst for RZABs by compositing a metal-organic framework (MOF) derived carbon network (MCN) and NiFe-layered double hydroxide (LDH) nanoplates. This design utilizes the conductivity and ultrahigh pore volume of the carbon network, boosting the catalytic activity of LDH and enhancing the catalytic durability in both half-cell measurements and RZAB assemblies. The RZAB with our MCN-LDH catalyst can discharge and recharge consistently at a current density of 10 mA cm-2 for at least 5 days, tripling the life hour of RZAB with noble metal catalysts.
dc.language.isoen
dc.publisherAMER CHEMICAL SOCIETY
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectElectrocatalysis
dc.subjectMetal-organic frameworks
dc.subjectLayered double hydroxides
dc.subjectRechargeable Zn-air batteries
dc.subjectOxygen reduction reaction
dc.subjectOxygen evolution reaction
dc.subjectBifunctionality
dc.subjectHierarchal nanostructure
dc.subjectDOUBLE-HYDROXIDE NANOSHEETS
dc.subjectOXYGEN REDUCTION REACTION
dc.subjectMETAL-ORGANIC FRAMEWORK
dc.subjectFUEL-CELLS
dc.subjectEVOLUTION
dc.subjectCATALYSTS
dc.subjectGRAPHENE
dc.subjectELECTRODES
dc.subjectSUPERCAPACITORS
dc.subjectNANOPARTICLES
dc.typeArticle
dc.date.updated2020-06-08T10:07:48Z
dc.contributor.departmentDEPT OF CHEMICAL & BIOMOLECULAR ENGG
dc.description.doi10.1021/acsaem.8b01923
dc.description.sourcetitleACS APPLIED ENERGY MATERIALS
dc.description.volume2
dc.description.issue3
dc.description.page1784-1792
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Zhao_2018_ACS AEM_dual catalyst_manuscript.docxSubmitted version2.92 MBMicrosoft Word XML

OPEN

Pre-printView/Download

SCOPUSTM   
Citations

11
checked on Dec 4, 2020

Page view(s)

53
checked on Dec 4, 2020

Download(s)

1
checked on Dec 4, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.