Please use this identifier to cite or link to this item: https://doi.org/10.1002/aenm.201900775
DC FieldValue
dc.titleMicrowave-Induced Metal Dissolution Synthesis of Core-Shell Copper Nanowires/ZnS for Visible Light Photocatalytic H-2 Evolution
dc.contributor.authorShuning Xiao
dc.contributor.authorWenrui Dai
dc.contributor.authorXiaoyan Liu
dc.contributor.authorDonglai Pan
dc.contributor.authorHangjun Zou
dc.contributor.authorGuisheng Li
dc.contributor.authorGuoqiang Zhang
dc.contributor.authorChenliang Su
dc.contributor.authorDieqing Zhang
dc.contributor.authorWei Chen
dc.contributor.authorHexing Li
dc.date.accessioned2020-06-04T03:53:05Z
dc.date.available2020-06-04T03:53:05Z
dc.date.issued2019-06-01
dc.identifier.citationShuning Xiao, Wenrui Dai, Xiaoyan Liu, Donglai Pan, Hangjun Zou, Guisheng Li, Guoqiang Zhang, Chenliang Su, Dieqing Zhang, Wei Chen, Hexing Li (2019-06-01). Microwave-Induced Metal Dissolution Synthesis of Core-Shell Copper Nanowires/ZnS for Visible Light Photocatalytic H-2 Evolution. ADVANCED ENERGY MATERIALS 9 (22). ScholarBank@NUS Repository. https://doi.org/10.1002/aenm.201900775
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/169210
dc.description.abstract© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A microwave-induced metal dissolution strategy is developed for in situ synthesis of copper nanowires/ZnS (CuNWs/ZnS) hybrids with core–shell structure. The CuNWs are used as microwave antennas to create local “super-hot” surfaces to further initiate ZnS crystallization with full coverage on CuNWs. With the help of S2−, the hot metal surface further results in the CuNWs dissolution with promoted Cu+ diffusion and incorporation into the ZnS lattice. With the narrowed bandgap of ZnS and the strongly coupled interface between CuNWs and ZnS created by microwaves, the as-prepared hybrid composites exhibit an enhanced activity and stability in visible light for the photocatalytic H2 evolution. The corresponding H2 evolution rate reaches up to 10722 µmol h−1 g−1 with apparent quantum efficiency (AQE) of 69% under 420 nm LED irradiation, showing a remarkably high AQE among the noble-metal free visible light-driven photocatalysts and demonstrating a promising potential in practical applications to deal with the energy crisis.
dc.language.isoen
dc.publisherWILEY-V C H VERLAG GMBH
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectcopper nanowires
dc.subjectH-2 evolution
dc.subjectmicrowave synthesis
dc.subjectphotocatalysis
dc.subjectHYDROGEN-PRODUCTION
dc.subjectHIGH-PERFORMANCE
dc.subjectH-2-PRODUCTION ACTIVITY
dc.subjectWATER
dc.subjectEFFICIENT
dc.subjectTIO2
dc.subjectNANOSHEETS
dc.subjectGRAPHENE
dc.subjectCOMPOSITE
dc.subjectMOS2
dc.typeArticle
dc.date.updated2020-05-29T08:44:57Z
dc.contributor.departmentCHEMISTRY
dc.description.doi10.1002/aenm.201900775
dc.description.sourcetitleADVANCED ENERGY MATERIALS
dc.description.volume9
dc.description.issue22
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Microwave-Induced Metal Dissolution Synthesis of Core-Shell Copper Nanowires ZnS for Visible Light Photocatalytic H-2 Evolution.pdf2.53 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.