Please use this identifier to cite or link to this item: https://doi.org/10.1126/sciadv.aaw2347
DC FieldValue
dc.titleGiant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor
dc.contributor.authorQiu, Zhizhan
dc.contributor.authorTrushin, Maxim
dc.contributor.authorFang, Hanyan
dc.contributor.authorVerzhbitskiy, Ivan
dc.contributor.authorGao, Shiyuan
dc.contributor.authorLaksono, Evan
dc.contributor.authorYang, Ming
dc.contributor.authorLyu, Pin
dc.contributor.authorLi, Jing
dc.contributor.authorSu, Jie
dc.contributor.authorTelychko, Mykola
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorWu, Jishan
dc.contributor.authorCastro Neto, AH
dc.contributor.authorYang, Li
dc.contributor.authorEda, Goki
dc.contributor.authorAdam, Shaffique
dc.contributor.authorLu, Jiong
dc.date.accessioned2020-05-05T00:26:53Z
dc.date.available2020-05-05T00:26:53Z
dc.date.issued2019-07-01
dc.identifier.citationQiu, Zhizhan, Trushin, Maxim, Fang, Hanyan, Verzhbitskiy, Ivan, Gao, Shiyuan, Laksono, Evan, Yang, Ming, Lyu, Pin, Li, Jing, Su, Jie, Telychko, Mykola, Watanabe, Kenji, Taniguchi, Takashi, Wu, Jishan, Castro Neto, AH, Yang, Li, Eda, Goki, Adam, Shaffique, Lu, Jiong (2019-07-01). Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor. SCIENCE ADVANCES 5 (7). ScholarBank@NUS Repository. https://doi.org/10.1126/sciadv.aaw2347
dc.identifier.issn2375-2548
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/167687
dc.description.abstractCopyright © 2019 The Authors, Understanding the remarkable excitonic effects and controlling the exciton binding energies in two-dimensional (2D) semiconductors are crucial in unlocking their full potential for use in future photonic and optoelectronic devices. Here, we demonstrate large excitonic effects and gate-tunable exciton binding energies in single-layer rhenium diselenide (ReSe2) on a back-gated graphene device. We used scanning tunneling spectroscopy and differential reflectance spectroscopy to measure the quasiparticle electronic and optical bandgap of single-layer ReSe2, respectively, yielding a large exciton binding energy of 520 meV. Further, we achieved continuous tuning of the electronic bandgap and exciton binding energy of monolayer ReSe2 by hundreds of milli–electron volts through electrostatic gating, attributed to tunable Coulomb interactions arising from the gate-controlled free carriers in graphene. Our findings open a new avenue for controlling the bandgap renormalization and exciton binding energies in 2D semiconductors for a wide range of technological applications.
dc.language.isoen
dc.publisherAMER ASSOC ADVANCEMENT SCIENCE
dc.sourceElements
dc.subjectScience & Technology
dc.subjectMultidisciplinary Sciences
dc.subjectScience & Technology - Other Topics
dc.subjectATOMICALLY THIN
dc.subjectHETEROSTRUCTURES
dc.subjectGRAPHENE
dc.subjectTRANSISTORS
dc.subjectCONTACTS
dc.subjectMOS2
dc.typeArticle
dc.date.updated2020-05-04T07:22:10Z
dc.contributor.departmentDEPT OF CHEMISTRY
dc.contributor.departmentCENTRE FOR ADVANCED 2D MATERIALS
dc.contributor.departmentDEPT OF PHYSICS
dc.contributor.departmentYALE-NUS COLLEGE
dc.description.doi10.1126/sciadv.aaw2347
dc.description.sourcetitleSCIENCE ADVANCES
dc.description.volume5
dc.description.issue7
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Giant gate-tunable bandgap renormalization_compressed.pdf298.67 kBAdobe PDF

OPEN

PublishedView/Download

SCOPUSTM   
Citations

7
checked on Jul 28, 2020

Page view(s)

32
checked on Jul 30, 2020

Download(s)

2
checked on Jul 30, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.