Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevA.99.062332
DC FieldValue
dc.titleVersatile security analysis of measurement-device-independent quantum key distribution
dc.contributor.authorIgnatius William Primaatmaja
dc.contributor.authorEmilien Lavie
dc.contributor.authorGOH KOON TONG
dc.contributor.authorWANG CHAO
dc.contributor.authorLIM CI WEN
dc.date.accessioned2020-04-24T04:56:47Z
dc.date.available2020-04-24T04:56:47Z
dc.date.issued2019-06-25
dc.identifier.citationIgnatius William Primaatmaja, Emilien Lavie, GOH KOON TONG, WANG CHAO, LIM CI WEN (2019-06-25). Versatile security analysis of measurement-device-independent quantum key distribution. Physical Review A 99 (6) : 062332. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevA.99.062332
dc.identifier.isbn2469-9926
dc.identifier.issn2469-9934
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/167106
dc.description.abstractMeasurement-device-independent quantum key distribution (MDI-QKD) is the only known QKD scheme that can completely overcome the problem of detection side-channel attacks. Yet, despite its practical importance, there is no standard approach towards proving the security of MDI-QKD. Here, we present a simple numerical method that can efficiently compute almost-tight security bounds for any discretely modulated MDI-QKD protocol. To demonstrate the broad utility of our method, we use it to analyze the security of coherent-state MDI-QKD, decoy-state MDI-QKD with leaky sources, and a variant of twin-field QKD called phase-matching QKD. In all of the numerical simulations (using realistic detection models) we find that our method gives significantly higher secret key rates than those obtained with current security proof techniques. Interestingly, we also find that phase-matching QKD using only two coherent test states is enough to overcome the fundamental rate-distance limit of QKD. Taken together, these findings suggest that our security proof method enables a versatile, fast, and possibly optimal approach towards the security validation of practical MDI-QKD systems.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subjectQuantum key distribution
dc.typeArticle
dc.contributor.departmentDEPT OF ELECTRICAL & COMPUTER ENGG
dc.description.doi10.1103/PhysRevA.99.062332
dc.description.sourcetitlePhysical Review A
dc.description.volume99
dc.description.issue6
dc.description.page062332
dc.published.statePublished
dc.grant.idNRFF11-2019-0001
dc.grant.idQEP-P2
dc.grant.idR-263-000-D04-731
dc.grant.idFA238618-1-4033
dc.grant.fundingagencyNational Research Foundation (NRF) Singapore
dc.grant.fundingagencyQuantum Engineering Programme
dc.grant.fundingagencyNational University of Singapore
dc.grant.fundingagencyAsian Office of Aerospace Research and Development
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Computational_toolbox_for_MDIQKD-2.pdfPreprint1 MBAdobe PDF

OPEN

Pre-printView/Download

SCOPUSTM   
Citations

27
checked on Sep 30, 2022

Page view(s)

195
checked on Sep 22, 2022

Download(s)

7
checked on Sep 22, 2022

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons