Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0103525
DC FieldValue
dc.titleExpression profiling of RNA transcripts during neuronal maturation and ischemic injury
dc.contributor.authorKaur P.
dc.contributor.authorKarolina D.S.
dc.contributor.authorSepramaniam S.
dc.contributor.authorArmugam A.
dc.contributor.authorJeyaseelan K.
dc.date.accessioned2020-03-19T03:04:14Z
dc.date.available2020-03-19T03:04:14Z
dc.date.issued2014
dc.identifier.citationKaur P., Karolina D.S., Sepramaniam S., Armugam A., Jeyaseelan K. (2014). Expression profiling of RNA transcripts during neuronal maturation and ischemic injury. PLoS ONE 9 (7) : e103525. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0103525
dc.identifier.issn19326203
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/165710
dc.description.abstractNeuronal development is a pro-survival process that involves neurite growth, synaptogenesis, synaptic and neuronal pruning. During development, these processes can be controlled by temporal gene expression that is orchestrated by both long non-coding RNAs and microRNAs. To examine the interplay between these different components of the transcriptome during neuronal differentiation, we carried out mRNA, long non-coding RNA and microRNA expression profiling on maturing primary neurons. Subsequent gene ontology analysis revealed regulation of axonogenesis and dendritogenesis processes by these differentially expressed mRNAs and non-coding RNAs. Temporally regulated mRNAs and their associated long non-coding RNAs were significantly over-represented in proliferation and differentiation associated signalling, cell adhesion and neurotrophin signalling pathways. Verification of expression of the Axin2, Prkcb, Cntn1, Ncam1, Negr1, Nrxn1 and Sh2b3 mRNAs and their respective long non-coding RNAs in an in vitro model of ischemic-reperfusion injury showed an inverse expression profile to the maturation process, thus suggesting their role(s) in maintaining neuronal structure and function. Furthermore, we propose that expression of the cell adhesion molecules, Ncam1 and Negr1 might be tightly regulated by both long non-coding RNAs and microRNAs. © 2014 Kaur et al.
dc.publisherPublic Library of Science
dc.sourceUnpaywall 20200320
dc.subjectcontactin 1
dc.subjectlong untranslated RNA
dc.subjectmessenger RNA
dc.subjectmicroRNA
dc.subjectmicroRNA 124
dc.subjectmicroRNA 128
dc.subjectmicroRNA 129 5p
dc.subjectmicroRNA 203
dc.subjectmicroRNA 218
dc.subjectmicroRNA 290 5p
dc.subjectmicroRNA 326
dc.subjectmicroRNA 329
dc.subjectmicroRNA 377
dc.subjectmicroRNA 495
dc.subjectneurotrophin
dc.subjecttranscriptome
dc.subjectunclassified drug
dc.subjectaxin
dc.subjectAxin2 protein, mouse
dc.subjectCD56 antigen
dc.subjectCntn1 protein, mouse
dc.subjectcontactin 1
dc.subjectLnk protein, mouse
dc.subjectmessenger RNA
dc.subjectNcam1 protein, mouse
dc.subjectNEGR1 protein, mouse
dc.subjectnerve cell adhesion molecule
dc.subjectNrxn1 protein, mouse
dc.subjectprkcb1 protein, mouse
dc.subjectprotein kinase C beta
dc.subjectsignal peptide
dc.subjectanimal cell
dc.subjectanimal experiment
dc.subjectanimal tissue
dc.subjectarticle
dc.subjectastrocyte
dc.subjectaxin2 gene
dc.subjectaxonogenesis
dc.subjectbrain cell culture
dc.subjectcell adhesion
dc.subjectcell maturation
dc.subjectcell proliferation
dc.subjectcell survival
dc.subjectCntn1 gene
dc.subjectcontrolled study
dc.subjectdendritogenesis
dc.subjectembryo
dc.subjectgene
dc.subjectgene cluster
dc.subjectgene expression profiling
dc.subjectgene expression regulation
dc.subjectgene ontology
dc.subjectgene regulatory network
dc.subjectglia cell
dc.subjecthypoxic ischemic encephalopathy
dc.subjectin vitro study
dc.subjectintracellular signaling
dc.subjectNCAM1 gene
dc.subjectNEGR1 gene
dc.subjectnerve cell
dc.subjectnerve cell differentiation
dc.subjectnerve fiber growth
dc.subjectnerve function
dc.subjectnonhuman
dc.subjectNRXN1 gene
dc.subjectnucleotide sequence
dc.subjectPrkcb gene
dc.subjectRNA sequence
dc.subjectRNA transcription
dc.subjectSh2b3 gene
dc.subjectsynaptogenesis
dc.subjectanimal
dc.subjectbrain
dc.subjectcell culture
dc.subjectcytology
dc.subjectembryology
dc.subjectgenetics
dc.subjectmetabolism
dc.subjectmouse
dc.subjectnerve cell
dc.subjectnervous system development
dc.subjectreperfusion injury
dc.subjectvascularization
dc.subjectAnimals
dc.subjectAntigens, CD56
dc.subjectAxin Protein
dc.subjectBrain
dc.subjectCell Adhesion Molecules, Neuronal
dc.subjectCells, Cultured
dc.subjectContactin 1
dc.subjectGene Expression Regulation, Developmental
dc.subjectIntracellular Signaling Peptides and Proteins
dc.subjectMice
dc.subjectNeural Cell Adhesion Molecules
dc.subjectNeurogenesis
dc.subjectNeurons
dc.subjectProtein Kinase C beta
dc.subjectReperfusion Injury
dc.subjectRNA, Messenger
dc.typeArticle
dc.contributor.departmentDEPT OF BIOCHEMISTRY
dc.contributor.departmentNUS ENVIRONMENTAL RESEARCH INSTITUTE
dc.contributor.departmentYALE-NUS COLLEGE
dc.description.doi10.1371/journal.pone.0103525
dc.description.sourcetitlePLoS ONE
dc.description.volume9
dc.description.issue7
dc.description.pagee103525
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0103525.pdf6.88 MBAdobe PDF

OPEN

PublishedView/Download

SCOPUSTM   
Citations

18
checked on Jun 21, 2022

WEB OF SCIENCETM
Citations

13
checked on Oct 5, 2021

Page view(s)

195
checked on Jun 23, 2022

Download(s)

2
checked on Jun 23, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.