Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/164190
DC FieldValue
dc.titleEFFICIENT OLAP FOR BIG DATA
dc.contributor.authorXIE ZHONGLE
dc.date.accessioned2020-01-31T18:01:21Z
dc.date.available2020-01-31T18:01:21Z
dc.date.issued2019-12-20
dc.identifier.citationXIE ZHONGLE (2019-12-20). EFFICIENT OLAP FOR BIG DATA. ScholarBank@NUS Repository.
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/164190
dc.description.abstractOnLine Analytical Processing (OLAP) faces many challenges in the era of big data. The exploded volume of the immutable data hinders OLAP system achieving high service level agreement with traditional indexing mechanisms. Further, the traditional OLAP system can hardly support new analysis queries such as cohort query or its variant in user behavioral data. In this dissertation, starting from the data indexing in storage layer to query processing engine, we present a general framework for emerging OLAP system in a bottom-up manner.
dc.language.isoen
dc.subjectOLAP, DATABASE SYSTEM, COHORT ANALYSIS, INDEX, SKIP LIST, TIME SERIES ANALYSIS
dc.typeThesis
dc.contributor.departmentCOMPUTER SCIENCE
dc.contributor.supervisorOoi Beng Chin
dc.description.degreePh.D
dc.description.degreeconferredDOCTOR OF PHILOSOPHY (SOC)
dc.identifier.orcid0000-0002-2924-6974
Appears in Collections:Ph.D Theses (Open)

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
XieZL.pdf5.03 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.