Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/162835
DC FieldValue
dc.titleEFFECTIVE SIMILARITY SEARCH
dc.contributor.authorGUO QI
dc.date.accessioned2019-12-18T18:00:41Z
dc.date.available2019-12-18T18:00:41Z
dc.date.issued2019-07-04
dc.identifier.citationGUO QI (2019-07-04). EFFECTIVE SIMILARITY SEARCH. ScholarBank@NUS Repository.
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/162835
dc.description.abstractThe data currently generated and collected increase fast not only in volume, but also in complexity, which brings great challenges to the field of data analysis. Similarity search has been acknowledged as one of the most important and useful query operators, and it plays a fundamental role of many applications. Thus, in this thesis, we investigate the problems concerning effective similarity search. We address the term "effective'' from three perspectives, aiming to provide our solutions to modern similarity search challenges. Firstly, we develop GENIE, a GPU-based Generic Inverted Index framework to support a wide variety of data types and similarity measures. Secondly, we propose a novel definition of diversity based on spatial angles for the problem of result diversification. Thirdly, we propose the personalized metric learning framework.
dc.language.isoen
dc.subjectSimilarity search, Inverted index, Result diversification, High-dimensional Space, Metric learning, GPU
dc.typeThesis
dc.contributor.departmentCOMPUTER SCIENCE
dc.contributor.supervisorKum Hoe, Anthony Tung
dc.description.degreePh.D
dc.description.degreeconferredDOCTOR OF PHILOSOPHY (SOC)
Appears in Collections:Ph.D Theses (Open)

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
GuoQ.pdf6.64 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.