Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pcbi.1004504
DC FieldValue
dc.titleAutomated Identification of Core Regulatory Genes in Human Gene Regulatory Networks
dc.contributor.authorNarang V.
dc.contributor.authorRamli M.A.
dc.contributor.authorSinghal A.
dc.contributor.authorKumar P.
dc.contributor.authorde Libero G.
dc.contributor.authorPoidinger M.
dc.contributor.authorMonterola C.
dc.date.accessioned2019-11-08T08:47:12Z
dc.date.available2019-11-08T08:47:12Z
dc.date.issued2015
dc.identifier.citationNarang V., Ramli M.A., Singhal A., Kumar P., de Libero G., Poidinger M., Monterola C. (2015). Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks. PLoS Computational Biology 11 (9) : e1004504. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pcbi.1004504
dc.identifier.issn1553734X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161933
dc.description.abstractHuman gene regulatory networks (GRN) can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs). Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data) accompanying this manuscript. ? 2015 Narang et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectArticle
dc.subjectautoanalysis
dc.subjectdata analysis
dc.subjectgene function
dc.subjectgene identification
dc.subjectgene regulatory network
dc.subjectgene targeting
dc.subjectgenetic algorithm
dc.subjecthuman genetics
dc.subjectmathematical analysis
dc.subjectMCF 7 cell line
dc.subjectmicroarray analysis
dc.subjectmolecular evolution
dc.subjecttranscription regulation
dc.subjectalgorithm
dc.subjectbiology
dc.subjectbreast tumor
dc.subjectclassification
dc.subjectfemale
dc.subjectgene expression profiling
dc.subjectgene regulatory network
dc.subjectgenetic database
dc.subjectgenetics
dc.subjecthuman
dc.subjectmetabolism
dc.subjectprocedures
dc.subjecttumor cell line
dc.subjectestrogen
dc.subjecttumor marker
dc.subjectAlgorithms
dc.subjectBiomarkers, Tumor
dc.subjectBreast Neoplasms
dc.subjectCell Line, Tumor
dc.subjectComputational Biology
dc.subjectDatabases, Genetic
dc.subjectEstrogens
dc.subjectFemale
dc.subjectGene Expression Profiling
dc.subjectGene Regulatory Networks
dc.subjectHumans
dc.typeArticle
dc.contributor.departmentBIOLOGY (NU)
dc.description.doi10.1371/journal.pcbi.1004504
dc.description.sourcetitlePLoS Computational Biology
dc.description.volume11
dc.description.issue9
dc.description.pagee1004504
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pcbi_1004504.pdf3.27 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons