Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0007614
DC FieldValue
dc.titleIdentification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard
dc.contributor.authorJiang X.-J.
dc.contributor.authorLi S.
dc.contributor.authorRavi V.
dc.contributor.authorVenkatesh B.
dc.contributor.authorYu W.-P.
dc.date.accessioned2019-11-07T08:16:19Z
dc.date.available2019-11-07T08:16:19Z
dc.date.issued2009
dc.identifier.citationJiang X.-J., Li S., Ravi V., Venkatesh B., Yu W.-P. (2009). Identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard. PLoS ONE 4 (10) : e7614. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0007614
dc.identifier.issn19326203
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161827
dc.description.abstractBackground: The vertebrate protocadherins are a subfamily of cell adhesion molecules that are predominantly expressed in the nervous system and are believed to play an important role in establishing the complex neural network during animal development. Genes encoding these molecules are organized into a cluster in the genome. Comparative analysis of the protocadherin subcluster organization and gene arrangements in different vertebrates has provided interesting insights into the history of vertebrate genome evolution. Among tetrapods, protocadherin clusters have been fully characterized only in mammals. In this study, we report the identification and comparative analysis of the protocadherin cluster in a reptile, the green anole lizard (Anolis carolinensis). Methodology/Principal Findings: We show that the anole protocadherin cluster spans over a megabase and encodes a total of 71 genes. The number of genes in the anole protocadherin cluster is significantly higher than that in the coelacanth (49 genes) and mammalian (54-59 genes) clusters. The anole protocadherin genes are organized into four subclusters: the ?, ?, ? and ?. This subcluster organization is identical to that of the coelacanth protocadherin cluster, but differs from the mammalian clusters which lack the ? subcluster. The gene number expansion in the anole protocadherin cluster is largely due to the extensive gene duplication in the ?b subgroup. Similar to coelacanth and elephant shark protocadherin genes, the anole protocadherin genes have experienced a low frequency of gene conversion. Conclusions/Significance: Our results suggest that similar to the protocadherin clusters in other vertebrates, the evolution of anole protocadherin cluster is driven mainly by lineage-specific gene duplications and degeneration. Our analysis also shows that loss of the protocadherin ? subcluster in the mammalian lineage occurred after the divergence of mammals and reptiles. We present a model for the evolutionary history of the protocadherin cluster in tetrapods. � 2009 Jiang et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectcadherin
dc.subjectprotocadherin
dc.subjectunclassified drug
dc.subjectcadherin
dc.subjectarticle
dc.subjectcomparative study
dc.subjectcontrolled study
dc.subjectconvergent evolution
dc.subjectgene cluster
dc.subjectgene conversion
dc.subjectgenetic code
dc.subjectlizard
dc.subjectmammal
dc.subjectnonhuman
dc.subjectphylogeny
dc.subjectprotein analysis
dc.subjectspecies difference
dc.subjecttaxonomy
dc.subjectanimal
dc.subjectbiological model
dc.subjectcell adhesion
dc.subjectcell lineage
dc.subjectcluster analysis
dc.subjectexon
dc.subjectgenetics
dc.subjectgenome
dc.subjectmolecular evolution
dc.subjectmultigene family
dc.subjectpolymerase chain reaction
dc.subjectreptile
dc.subjectAnimalia
dc.subjectAnolis carolinensis
dc.subjectChondrichthyes
dc.subjectCoelacanthidae
dc.subjectMammalia
dc.subjectReptilia
dc.subjectSquamata
dc.subjectTetrapoda
dc.subjectVertebrata
dc.subjectAnimals
dc.subjectCadherins
dc.subjectCell Adhesion
dc.subjectCell Lineage
dc.subjectCluster Analysis
dc.subjectEvolution, Molecular
dc.subjectExons
dc.subjectGenome
dc.subjectLizards
dc.subjectModels, Genetic
dc.subjectMultigene Family
dc.subjectPhylogeny
dc.subjectPolymerase Chain Reaction
dc.subjectReptiles
dc.typeArticle
dc.contributor.departmentPAEDIATRICS
dc.description.doi10.1371/journal.pone.0007614
dc.description.sourcetitlePLoS ONE
dc.description.volume4
dc.description.issue10
dc.description.pagee7614
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0007614.pdf381.76 kBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons