Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0109803
DC FieldValue
dc.titleToxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways
dc.contributor.authorLee I.-P.
dc.contributor.authorEvans A.K.
dc.contributor.authorYang C.
dc.contributor.authorWorks M.G.
dc.contributor.authorKumar V.
dc.contributor.authorDe Miguel Z.
dc.contributor.authorManley N.C.
dc.contributor.authorSapolsky R.M.
dc.date.accessioned2019-11-07T05:07:01Z
dc.date.available2019-11-07T05:07:01Z
dc.date.issued2014
dc.identifier.citationLee I.-P., Evans A.K., Yang C., Works M.G., Kumar V., De Miguel Z., Manley N.C., Sapolsky R.M. (2014). Toxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways. PLoS ONE 9 (10) : e109803. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0109803
dc.identifier.issn19326203
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/161770
dc.description.abstractThe obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1) T. gondii relies on glutamine for optimal infection, replication and viability, and 2) T. gondii-infected bone marrow-derived dendritic cells (DCs) display both "hypermotility" and "enhanced migration" to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2) is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1) in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1) blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS)-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility. © 2014 Raghunathan et al.
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceUnpaywall 20191101
dc.subjectamino acid transporter
dc.subjectB7 antigen
dc.subjectchemokine receptor CXCR4
dc.subjectglutamine
dc.subjectlipopolysaccharide
dc.subjectphosphatidylinositol 3 kinase
dc.subjectRho kinase
dc.subjectsodium dependent neutral amino acid transporter 2
dc.subjectstromal cell derived factor 1alpha
dc.subjectunclassified drug
dc.subjectamino acid transporter
dc.subjectchemokine receptor CXCR4
dc.subjectCXCL12 protein, rat
dc.subjectCxcr4 protein, rat
dc.subjectglutamine
dc.subjectlipopolysaccharide
dc.subjectluciferase
dc.subjectSNAT2 protein, rat
dc.subjectstromal cell derived factor 1
dc.subjectamino acid transport
dc.subjectanimal cell
dc.subjectanimal tissue
dc.subjectArticle
dc.subjectbone marrow
dc.subjectcell damage
dc.subjectcell migration
dc.subjectcell motility
dc.subjectcontrolled study
dc.subjectdendritic cell
dc.subjectfemale
dc.subjecthost cell
dc.subjectimmunocompetent cell
dc.subjectin vitro study
dc.subjectintracellular signaling
dc.subjectnonhuman
dc.subjectparasite cultivation
dc.subjectparasite viability
dc.subjectphenotype
dc.subjectprotein expression
dc.subjectprotein protein interaction
dc.subjectrat
dc.subjectToxoplasma gondii
dc.subjecttoxoplasmosis
dc.subjectWestern blotting
dc.subjectanimal
dc.subjectbone marrow cell
dc.subjectcell differentiation
dc.subjectcell motion
dc.subjectdrug effects
dc.subjectfibroblast
dc.subjectgene expression regulation
dc.subjectgenetics
dc.subjecthost pathogen interaction
dc.subjecthuman
dc.subjectimmunology
dc.subjectmetabolism
dc.subjectnewborn
dc.subjectparasitology
dc.subjectpathology
dc.subjectprimary cell culture
dc.subjectreporter gene
dc.subjectsignal transduction
dc.subjectSprague Dawley rat
dc.subjectToxoplasma
dc.subjecttransgenic organism
dc.subjectToxoplasma gondii
dc.subjectAmino Acid Transport Systems
dc.subjectAnimals
dc.subjectAnimals, Newborn
dc.subjectBone Marrow Cells
dc.subjectCell Differentiation
dc.subjectCell Movement
dc.subjectChemokine CXCL12
dc.subjectDendritic Cells
dc.subjectFibroblasts
dc.subjectGene Expression Regulation
dc.subjectGenes, Reporter
dc.subjectGlutamine
dc.subjectHost-Pathogen Interactions
dc.subjectHumans
dc.subjectLipopolysaccharides
dc.subjectLuciferases
dc.subjectOrganisms, Genetically Modified
dc.subjectPrimary Cell Culture
dc.subjectRats
dc.subjectRats, Sprague-Dawley
dc.subjectReceptors, CXCR4
dc.subjectSignal Transduction
dc.subjectToxoplasma
dc.typeArticle
dc.contributor.departmentPHARMACOLOGY
dc.description.doi10.1371/journal.pone.0109803
dc.description.sourcetitlePLoS ONE
dc.description.volume9
dc.description.issue10
dc.description.pagee109803
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0109803.pdf1.95 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons