Please use this identifier to cite or link to this item: https://doi.org/10.1371/journal.pone.0162848
Title: Specific internalisation of gold nanoparticles into engineered porous protein cages via affinity binding
Authors: Paramelle D.
Peng T.
Free P.
Fernig D.G.
Lim S.
Tomczak N. 
Keywords: alkane
bacterial protein
E2 protein
ethylene
glycol
gold nanoparticle
histidine
ligand
nitrilotriacetate nickel
peptide
unclassified drug
bacterial protein
gold
metal nanoparticle
protein
protein binding
amino acid sequence
Article
binding affinity
Geobacillus stearothermophilus
internalization
mutation
porosity
protein assembly
protein binding
protein engineering
protein structure
site directed mutagenesis
structure analysis
surface property
bacterial gene
chemistry
genetics
molecular model
nanotechnology
porosity
protein engineering
protein multimerization
transmission electron microscopy
ultrastructure
Bacterial Proteins
Genes, Bacterial
Geobacillus stearothermophilus
Gold
Histidine
Ligands
Metal Nanoparticles
Microscopy, Electron, Transmission
Models, Molecular
Nanotechnology
Porosity
Protein Binding
Protein Engineering
Protein Multimerization
Proteins
Issue Date: 2016
Citation: Paramelle D., Peng T., Free P., Fernig D.G., Lim S., Tomczak N. (2016). Specific internalisation of gold nanoparticles into engineered porous protein cages via affinity binding. PLoS ONE 11 (9) : e0162848. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0162848
Abstract: Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages' pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages' core and low non-specific binding to the cages' outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage's core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticleswith Ni2+ nitrilotriaceticmoieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently available approaches and provides a new route to design tailored and well-controlled hybrid nanoparticles. © 2016 Paramelle et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Source Title: PLoS ONE
URI: https://scholarbank.nus.edu.sg/handle/10635/161555
ISSN: 19326203
DOI: 10.1371/journal.pone.0162848
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1371_journal_pone_0162848.pdf2.17 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

1
checked on Jan 13, 2020

Page view(s)

21
checked on Jan 16, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.