Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jalgebra.2015.08.017
DC FieldValue
dc.titlePeriodic Lie modules
dc.contributor.authorLim, Kay Jin
dc.contributor.authorTan, Kai Meng
dc.date.accessioned2019-06-07T01:31:34Z
dc.date.available2019-06-07T01:31:34Z
dc.date.issued2016-01-01
dc.identifier.citationLim, Kay Jin, Tan, Kai Meng (2016-01-01). Periodic Lie modules. JOURNAL OF ALGEBRA 445 : 280-294. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jalgebra.2015.08.017
dc.identifier.issn0021-8693
dc.identifier.issn1090-266X
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/155266
dc.description.abstract© 2015 Elsevier Inc. Let p be a prime number and k be a positive integer not divisible by p. We describe the Heller translates of the periodic Lie module Lie(pk) in characteristic p and show that it has period 2p-2 when p is odd and 1 when p= 2. We also show these Lie modules are endo-. p-permutation modules.
dc.publisherElsevier BV
dc.sourceElements
dc.subjectPeriodic module
dc.subjectLie module
dc.subjectSymmetric group
dc.typeArticle
dc.date.updated2019-06-03T09:15:30Z
dc.contributor.departmentDEPT OF MATHEMATICS
dc.description.doi10.1016/j.jalgebra.2015.08.017
dc.description.sourcetitleJOURNAL OF ALGEBRA
dc.description.volume445
dc.description.page280-294
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
may15.pdf350.25 kBAdobe PDF

OPEN

Post-printView/Download

Page view(s)

237
checked on Jan 13, 2022

Download(s)

5
checked on Jan 13, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.