Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.colsurfa.2016.06.052
DC FieldValue
dc.titleSilica-cellulose hybrid aerogels for thermal and acoustic insulation. applications
dc.contributor.authorFeng, Jingduo
dc.contributor.authorLe, Duyen
dc.contributor.authorNguyen, Son T
dc.contributor.authorNien, Victor Tan Chin
dc.contributor.authorJewell, Daniel
dc.contributor.authorDuong, Hai M
dc.date.accessioned2019-06-06T05:59:05Z
dc.date.available2019-06-06T05:59:05Z
dc.date.issued2016-10-05
dc.identifier.citationFeng, Jingduo, Le, Duyen, Nguyen, Son T, Nien, Victor Tan Chin, Jewell, Daniel, Duong, Hai M (2016-10-05). Silica-cellulose hybrid aerogels for thermal and acoustic insulation. applications. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 506 : 298-305. ScholarBank@NUS Repository. https://doi.org/10.1016/j.colsurfa.2016.06.052
dc.identifier.issn0927-7757
dc.identifier.issn1873-4359
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/155212
dc.description.abstract© 2016 Elsevier B.V. Silica–cellulose aerogels were successfully developed from recycled cellulose fibres and methoxytrimethylsilane (MTMS) silica precursor for the first time. The developed silica–cellulose aerogels showed the super-hydrophobicity with an average water contact angle of 151°. Their thermal conductivity was approximately 0.04 W/mK. Moreover, the thermal degradation temperature for the cellulose component of the silica–cellulose aerogels showed a 25 °C improvement over those for cellulose aerogels. The sound absorption coefficients of the silica–cellulose aerogels with a 10 mm thickness were 0.39–0.50, better than those of cellulose aerogels (0.30–0.40) and commercial polystyrene foams. When the cellulose fibre concentration increases from 1.0 to 4.0 wt.%, the compressive Young's modulus of the silica–cellulose aerogels can be enhanced 160%, up to 139 KPa. This work provides a facile approach to fabricate cost-effective and promising silica–cellulose aerogels with industrial dimensions for thermal and acoustic insulation applications.
dc.language.isoen
dc.publisherELSEVIER SCIENCE BV
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectChemistry, Physical
dc.subjectChemistry
dc.subjectAerogel
dc.subjectRecycled cellulose fibre
dc.subjectSilica
dc.subjectAcoustic insulation
dc.subjectThermal insulation
dc.subjectABSORPTION PROPERTIES
dc.subjectCOMPOSITE AEROGELS
dc.subjectCONDUCTIVITY
dc.subjectPERFORMANCE
dc.subjectPRECURSORS
dc.subjectWASTE
dc.subjectNOISE
dc.subjectFIBER
dc.subjectPAPER
dc.typeArticle
dc.date.updated2019-06-03T08:24:53Z
dc.contributor.departmentDEPT OF MECHANICAL ENGINEERING
dc.description.doi10.1016/j.colsurfa.2016.06.052
dc.description.sourcetitleCOLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
dc.description.volume506
dc.description.page298-305
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
1-s2.0-S0927775716305040-main.pdfPublished version2.02 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

136
checked on Dec 8, 2022

WEB OF SCIENCETM
Citations

42
checked on Jul 16, 2019

Page view(s)

327
checked on Dec 1, 2022

Download(s)

8
checked on Dec 1, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.