Please use this identifier to cite or link to this item: https://doi.org/10.1002/mrm.27463
Title: Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord
Authors: Grussu F.
Ianuş A.
Tur C.
Prados F.
Schneider T.
Kaden E.
Ourselin S.
Drobnjak I.
Zhang H.
Alexander D.C. 
Gandini Wheeler-Kingshott C.A.M.
Keywords: diffusion time
microstructure
Monte Carlo simulations
spinal cord
white matter
Issue Date: 2018
Publisher: John Wiley and Sons Inc.
Citation: Grussu F., Ianuş A., Tur C., Prados F., Schneider T., Kaden E., Ourselin S., Drobnjak I., Zhang H., Alexander D.C., Gandini Wheeler-Kingshott C.A.M. (2018). Relevance of time-dependence for clinically viable diffusion imaging of the spinal cord. Magnetic Resonance in Medicine. ScholarBank@NUS Repository. https://doi.org/10.1002/mrm.27463
Abstract: Purpose: Time-dependence is a key feature of the diffusion-weighted (DW) signal, knowledge of which informs biophysical modelling. Here, we study time-dependence in the human spinal cord, as its axonal structure is specific and different from the brain. Theory and Methods: We run Monte Carlo simulations using a synthetic model of spinal cord white matter (WM) (large axons), and of brain WM (smaller axons). Furthermore, we study clinically feasible multi-shell DW scans of the cervical spinal cord (b = 0; b = 711 s mm-2; b = 2855 s mm-2), obtained using three diffusion times (Δ of 29, 52 and 76 ms) from three volunteers. Results: Both intra-/extra-axonal perpendicular diffusivities and kurtosis excess show time-dependence in our synthetic spinal cord model. This time-dependence is reflected mostly in the intra-axonal perpendicular DW signal, which also exhibits strong decay, unlike our brain model. Time-dependence of the total DW signal appears detectable in the presence of noise in our synthetic spinal cord model, but not in the brain. In WM in vivo, we observe time-dependent macroscopic and microscopic diffusivities and diffusion kurtosis, NODDI and two-compartment SMT metrics. Accounting for large axon calibers improves fitting of multi-compartment models to a minor extent. Conclusions: Time-dependence of clinically viable DW MRI metrics can be detected in vivo in spinal cord WM, thus providing new opportunities for the non-invasive estimation of microstructural properties. The time-dependence of the perpendicular DW signal may feature strong intra-axonal contributions due to large spinal axon caliber. Hence, a popular model known as “stick” (zero-radius cylinder) may be sub-optimal to describe signals from the largest spinal axons. © 2018 International Society for Magnetic Resonance in Medicine
Source Title: Magnetic Resonance in Medicine
URI: http://scholarbank.nus.edu.sg/handle/10635/152047
ISSN: 07403194
DOI: 10.1002/mrm.27463
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
mrm.27463.pdf1.37 MBAdobe PDF

OPEN

NoneView/Download

SCOPUSTM   
Citations

2
checked on Apr 19, 2019

Page view(s)

23
checked on Apr 4, 2019

Download(s)

2
checked on Apr 4, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.