Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/146324
Title: A GMM parts based face representation for improved verification through relevance adaptation
Authors: Lucey S.
Chen T. 
Issue Date: 2004
Citation: Lucey S., Chen T. (2004). A GMM parts based face representation for improved verification through relevance adaptation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2 : II855-II861. ScholarBank@NUS Repository.
Abstract: Motivated by the success of parts based representations in face detection we have attempted to address some of the problems associated with applying such a philosophy to the task of face verification. Hitherto, a major problem with this approach in face verification is the intrinsic lack of training observations, stemming from individual subjects, in order to estimate the required conditional distributions. The estimated distributions have to be generalized enough to encompass the differing permutations of a subject's face yet still be able to discriminate between subjects. In our work the well known Gaussian mixture model (GMM) framework is employed to model the conditional density function of the parts based representation of the face. We demonstrate that excellent performance can be obtained from our GMM based representation through the employment of adaptation theory, specifically relevance adaptation (RA). Our results are presented for the frontal images of the BANCA database.
Source Title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
URI: http://scholarbank.nus.edu.sg/handle/10635/146324
ISSN: 10636919
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

32
checked on Oct 14, 2021

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.