Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/14435
DC FieldValue
dc.titlePrediction of protein-ligand binding affinity using neural networks
dc.contributor.authorPAVANDIP SINGH WASAN
dc.date.accessioned2010-04-08T10:43:08Z
dc.date.available2010-04-08T10:43:08Z
dc.date.issued2005-04-13
dc.identifier.citationPAVANDIP SINGH WASAN (2005-04-13). Prediction of protein-ligand binding affinity using neural networks. ScholarBank@NUS Repository.
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/14435
dc.description.abstractA big problem in the life-sciences is the ability to calculate, in-silico, the binding affinity between a protein active site and a lead-ligand. This thesis introduces a new method to predict the binding affinity of a given drug ligand and active site, using backpropagation neural networks of 128 protein ligand complexes, with electrostatic, hydrogen bonding and molecular weight parameters. The parameters are given space and magnitude consideration, through the use of physico-chemical autocorrelation for the preparation of the input parameters. Self-Organizing Maps(SOM) are used as well to visualize the distribution of the input cases in similarity space. The results showed an improvement in accuracy over multiple regressive and the BLEEP method for calculation of binding affinity, using Root Mean Square, Relative Root Mean Square, Mean Absolute and Relative Mean Absolute Error calculations. The SOM additionally showed positive clustering of protein-ligand complexes, from similar families spread through the input space.
dc.language.isoen
dc.subjectNeural Network, Backpropagation, Autocorrelation, Drug Design, SOM, Binding
dc.typeThesis
dc.contributor.departmentINFORMATION SYSTEMS
dc.contributor.supervisorSETIONO, RUDY
dc.description.degreeMaster's
dc.description.degreeconferredMASTER OF SCIENCE
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Master's Theses (Open)

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
AppendixC_Disk.doc4.53 MBMicrosoft Word

OPEN

NoneView/Download
AppendixD_Disc.xls138.5 kBMicrosoft Excel

OPEN

NoneView/Download
Thesis Submission.pdf9.04 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.