Please use this identifier to cite or link to this item: https://doi.org/10.4208/cicp.230412.271212a
DC FieldValue
dc.titleSpace-time discontinuous Galerkin method for Maxwell's equations
dc.contributor.authorXie, Z.
dc.contributor.authorWang, B.
dc.contributor.authorZhang, Z.
dc.date.accessioned2016-12-13T09:15:12Z
dc.date.available2016-12-13T09:15:12Z
dc.date.issued2013-10
dc.identifier.citationXie, Z., Wang, B., Zhang, Z. (2013-10). Space-time discontinuous Galerkin method for Maxwell's equations. Communications in Computational Physics 14 (4) : 916-939. ScholarBank@NUS Repository. https://doi.org/10.4208/cicp.230412.271212a
dc.identifier.issn18152406
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/133099
dc.description.abstractA fully discrete discontinuous Galerkin method is introduced for solving time-dependent Maxwell's equations. Distinguished from the Runge-Kutta discontinuous Galerkin method (RKDG) and the finite element time domain method (FETD), in our scheme, discontinuous Galerkinmethods are used to discretize not only the spatial domain but also the temporal domain. The proposed numerical scheme is proved to be unconditionally stable, and a convergent rate script O sign((Δt)r+1 + hk+1/2) is established under the L2-normwhen polynomials of degree atmost r and k are used for temporal and spatial approximation, respectively. Numerical results in both 2-D and 3-D are provided to validate the theoretical prediction. An ultra-convergence of order (Δt)2r+1 in time step is observed numerically for the numerical fluxes w.r.t. temporal variable at the grid points. © 2013 Global-Science Press.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.4208/cicp.230412.271212a
dc.sourceScopus
dc.subjectDiscontinuous Galerkin method
dc.subjectFull-discretization
dc.subjectL2-error estimate
dc.subjectL2-stability
dc.subjectMaxwell's equations
dc.subjectUltra-convergence
dc.typeArticle
dc.contributor.departmentSINGAPORE-MIT ALLIANCE
dc.description.doi10.4208/cicp.230412.271212a
dc.description.sourcetitleCommunications in Computational Physics
dc.description.volume14
dc.description.issue4
dc.description.page916-939
dc.identifier.isiut000322071000003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

9
checked on Jan 16, 2020

WEB OF SCIENCETM
Citations

9
checked on Jan 16, 2020

Page view(s)

53
checked on Jan 17, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.