Please use this identifier to cite or link to this item: https://doi.org/10.1023/B:DESI.0000035466.28660.e9
DC FieldValue
dc.titleHow many bits have to be changed to decrease the linear complexity?
dc.contributor.authorMeidl, W.
dc.date.accessioned2016-12-13T05:36:17Z
dc.date.available2016-12-13T05:36:17Z
dc.date.issued2004-09
dc.identifier.citationMeidl, W. (2004-09). How many bits have to be changed to decrease the linear complexity?. Designs, Codes, and Cryptography 33 (2) : 109-122. ScholarBank@NUS Repository. https://doi.org/10.1023/B:DESI.0000035466.28660.e9
dc.identifier.issn09251022
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/132767
dc.description.abstractThe k-error linear complexity of periodic binary sequences is defined to be the smallest linear complexity that can be obtained by changing k or fewer bits of the sequence per period. For the period length p n, where p is an odd prime and 2 is a primitive root modulo p 2, we show a relationship between the linear complexity and the minimum value k for which the k-error linear complexity is strictly less than the linear complexity. Moreover, we describe an algorithm to determine the k-error linear complexity of a given p n-periodic binary sequence.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1023/B:DESI.0000035466.28660.e9
dc.sourceScopus
dc.subjectAlgorithm
dc.subjectk-error linear complexity
dc.subjectLinear complexity
dc.subjectPeriodic sequences
dc.subjectStream ciphers
dc.typeArticle
dc.contributor.departmentTEMASEK LABORATORIES
dc.description.doi10.1023/B:DESI.0000035466.28660.e9
dc.description.sourcetitleDesigns, Codes, and Cryptography
dc.description.volume33
dc.description.issue2
dc.description.page109-122
dc.description.codenDCCRE
dc.identifier.isiut000222800900002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

28
checked on Jul 1, 2022

WEB OF SCIENCETM
Citations

24
checked on Jul 1, 2022

Page view(s)

93
checked on Jun 23, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.