Please use this identifier to cite or link to this item:
Title: A distributed, cooperative multi-agent system for real-time traffic signal control
Keywords: Mutli-Agent Systems, Traffic Signals
Issue Date: 2-Jun-2008
Citation: XAVIER JEAN ALBERT GERMAN (2008-06-02). A distributed, cooperative multi-agent system for real-time traffic signal control. ScholarBank@NUS Repository.
Abstract: This dissertation presents a new algorithm designed to control the traffic signals in real time in a dense city network. This algorithm uses a distributed multi-agent system, in which agents are able to pass information on current traffic conditions to each other. Furthermore, reinforcement learning is used to calibrate the parameters used by the agents and a database of previous traffic conditions helps the agents to predict the future traffic. This Reinforcement Learning Multi-Agent System (RLA) is then compared to other exiting traffic signal control algorithms. Simulations were realised on a network containing 29 signalised intersections, modelling the central business district of Singapore, using real demand data, and under a number of different traffic conditions. The results show that this algorithm performs up to 25% better than other multi-agents systems or actuated control.
Appears in Collections:Master's Theses (Open)

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Xavier German Thesis.pdf874.19 kBAdobe PDF



Page view(s)

checked on Apr 19, 2019


checked on Apr 19, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.