Please use this identifier to cite or link to this item:
Title: Sorting nexin Snx41 is essential for conidiation and mediates glutathione-based antioxidant defense during invasive growth in Magnaporthe oryzae
Authors: Deng, Y.Z.
Qu, Z.
He, Y.
Naqvi, N.I. 
Keywords: Antioxidant
Fungal virulence
Sorting nexin
Issue Date: Jul-2012
Citation: Deng, Y.Z., Qu, Z., He, Y., Naqvi, N.I. (2012-07). Sorting nexin Snx41 is essential for conidiation and mediates glutathione-based antioxidant defense during invasive growth in Magnaporthe oryzae. Autophagy 8 (7) : 1058-1070. ScholarBank@NUS Repository.
Abstract: The sorting nexins Atg20/Snx42 and Snx41 regulate membrane traffic and endosomal protein sorting and are essential for Cvt and/or pexophagy in yeast. Previously, we showed that macroautophagy is necessary for conidiation in the rice-blast fungus Magnaporthe oryzae. Here, we analyzed the physiological function(s) of selective autophagy in Magnaporthe through targeted deletion of MGG-12832, an ortholog of yeast SNX41 and ATG20/SNX42. Loss of MGG-12832 (hereafter SNX41) abolished conidia formation and pathogenesis in M. oryzae. Snx41-GFP localized as dynamic puncta or short tubules that are partially associated with autophagosomes and/or autophagic vacuoles. PX domain, but not macroautophagy per se, was required for such localization of Snx41-GFP in Magnaporthe. Although not required for nonselective autophagy, Snx41 was essential for pexophagy in Magnaporthe. We identified Oxp1, an ATP-dependent oxoprolinase in the gamma-glutamyl cycle, as a binding partner and potential retrieval target of Snx41-dependent protein sorting. The substrate of Oxp1, 5-oxoproline, could partially restore conidiation in the snx41Δ. Exogenous glutathione, a product of the gamma-glutamyl cycle, significantly restored pathogenicity in the snx41Δ mutant, likely through counteracting the oxidative stress imposed by the host. We propose that the gamma-glutamyl cycle and glutathione biosynthesis are subject to regulation by Snx41-dependent vesicular trafficking, and mediate antioxidant defense crucial for in planta growth and pathogenic differentiation of Magnaporthe at the onset of blast disease in rice. © 2012 Landes Bioscience.
Source Title: Autophagy
ISSN: 15548627
DOI: 10.4161/auto.20217
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Aug 12, 2022


checked on Aug 12, 2022

Page view(s)

checked on Aug 4, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.