Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.enconman.2013.11.043
DC FieldValue
dc.titleSatellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics
dc.contributor.authorDong, Z.
dc.contributor.authorYang, D.
dc.contributor.authorReindl, T.
dc.contributor.authorWalsh, W.M.
dc.date.accessioned2016-10-19T08:44:42Z
dc.date.available2016-10-19T08:44:42Z
dc.date.issued2014-03
dc.identifier.citationDong, Z., Yang, D., Reindl, T., Walsh, W.M. (2014-03). Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics. Energy Conversion and Management 79 : 66-73. ScholarBank@NUS Repository. https://doi.org/10.1016/j.enconman.2013.11.043
dc.identifier.issn01968904
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/128746
dc.description.abstractWe forecast hourly solar irradiance time series using satellite image analysis and a hybrid exponential smoothing state space (ESSS) model together with artificial neural networks (ANN). Since cloud cover is the major factor affecting solar irradiance, cloud detection and classification are crucial to forecast solar irradiance. Geostationary satellite images provide cloud information, allowing a cloud cover index to be derived and analysed using self-organizing maps (SOM). Owing to the stochastic nature of cloud generation in tropical regions, the ESSS model is used to forecast cloud cover index. Among different models applied in ANN, we favour the multi-layer perceptron (MLP) to derive solar irradiance based on the cloud cover index. This hybrid model has been used to forecast hourly solar irradiance in Singapore and the technique is found to outperform traditional forecasting models. © 2013 Elsevier Ltd. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.enconman.2013.11.043
dc.sourceScopus
dc.subjectExponential smoothing state space model
dc.subjectHourly solar irradiance forecasting
dc.subjectMulti-layer perceptron
dc.subjectSatellite image analysis
dc.subjectSelf-organizing maps
dc.typeArticle
dc.contributor.departmentSOLAR ENERGY RESEARCH INST OF S'PORE
dc.description.doi10.1016/j.enconman.2013.11.043
dc.description.sourcetitleEnergy Conversion and Management
dc.description.volume79
dc.description.page66-73
dc.description.codenECMAD
dc.identifier.isiut000333946700009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

74
checked on May 29, 2023

WEB OF SCIENCETM
Citations

70
checked on May 19, 2023

Page view(s)

154
checked on May 25, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.