Please use this identifier to cite or link to this item:
Title: Altered actin centripetal retrograde flow in physically restricted immunological synapses
Authors: Yu, C.
Wu, H.-J.
Kaizuka, Y.
Vale, R.D.
Issue Date: 2010
Citation: Yu, C., Wu, H.-J., Kaizuka, Y., Vale, R.D., GROVES,IV, JOHN TAYLOR (2010). Altered actin centripetal retrograde flow in physically restricted immunological synapses. PLoS ONE 5 (7) : -. ScholarBank@NUS Repository.
Abstract: Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3ε on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network. © 2010 Yu et al.
Source Title: PLoS ONE
ISSN: 19326203
DOI: 10.1371/journal.pone.0011878
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jun 10, 2021


checked on Jun 3, 2021

Page view(s)

checked on Jun 6, 2021

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.