Please use this identifier to cite or link to this item:
https://doi.org/10.1007/s10916-010-9646-1
Title: | Intelligent analysis of acute bed overflow in a tertiary hospital in Singapore | Authors: | Teow, K.L. El-Darzi, E. Foo, C. Jin, X. Sim, J. |
Keywords: | Data mining Decision tree Hospital bed Logistic regression Overflow |
Issue Date: | Jun-2012 | Citation: | Teow, K.L., El-Darzi, E., Foo, C., Jin, X., Sim, J. (2012-06). Intelligent analysis of acute bed overflow in a tertiary hospital in Singapore. Journal of Medical Systems 36 (3) : 1873-1882. ScholarBank@NUS Repository. https://doi.org/10.1007/s10916-010-9646-1 | Abstract: | Hospital beds are a scarce resource and always in need. The beds are often organized by clinical specialties for better patient care. When the Accident & Emergency Department (A&E) admits a patient, there may not be an available bed that matches the requested specialty. The patient may be thus asked to wait at the A&E till a matching bed is available, or assigned a bed from a different specialty, which results in bed overflow. While this allows the patient to have faster access to an inpatient bed and treatment, it creates other problems. For instance, nursing care may be suboptimal and the doctors will need to spend more time to locate the overflow patients. The decision to allocate an overflow bed, or to let the patient wait a bit longer, can be a complicated one. While there can be a policy to guide the bed allocation decision, in reality it depends on clinical calls, current supply and waiting list, projected supply (i.e. planned discharges) and demand. The extent of bed overflow can therefore vary greatly, both in time dimension and across specialties. In this study, we extracted hospital data and used statistical and data mining approaches to identify the patterns behind bed overflow. With this insight, the hospital administration can be better equipped to devise strategies to reduce bed overflow and therefore improve patient care. Computational results show the viability of these intelligent data analysis techniques for understanding and managing the bed overflow problem. © Springer Science+Business Media, LLC 2011. | Source Title: | Journal of Medical Systems | URI: | http://scholarbank.nus.edu.sg/handle/10635/127120 | ISSN: | 01485598 | DOI: | 10.1007/s10916-010-9646-1 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.