Please use this identifier to cite or link to this item:
https://doi.org/10.1118/1.4820539
DC Field | Value | |
---|---|---|
dc.title | Content-based image retrieval of multiphase CT images for focal liver lesion characterization | |
dc.contributor.author | Chi, Y. | |
dc.contributor.author | Zhou, J. | |
dc.contributor.author | Venkatesh, S.K. | |
dc.contributor.author | Tian, Q. | |
dc.contributor.author | Liu, J. | |
dc.date.accessioned | 2016-09-06T09:10:12Z | |
dc.date.available | 2016-09-06T09:10:12Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Chi, Y., Zhou, J., Venkatesh, S.K., Tian, Q., Liu, J. (2013). Content-based image retrieval of multiphase CT images for focal liver lesion characterization. Medical Physics 40 (10) : -. ScholarBank@NUS Repository. https://doi.org/10.1118/1.4820539 | |
dc.identifier.issn | 00942405 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/126947 | |
dc.description.abstract | Purpose: Characterization of focal liver lesions with various imaging modalities can be very challenging in the clinical practice and is experience-dependent. The authors' aim is to develop an automatic method to facilitate the characterization of focal liver lesions (FLLs) using multiphase computed tomography (CT) images by radiologists. Methods: A multiphase-image retrieval system is proposed to retrieve a preconstructed database of FLLs with confirmed diagnoses, which can assist radiologists' decision-making in FLL characterization. It first localizes the FLL on multiphase CT scans using a hybrid generative-discriminative FLL detection method and a nonrigid B-spline registration method. Then, it extracts the multiphase density and texture features to numerically represent the FLL. Next, it compares the query FLL with the model FLLs in the database in terms of the feature and measures their similarities using the L1-norm based similarity scores. The model FLLs are ranked by similarities and the top results are finally provided to the users for their evidence studies. Results: The system was tested on a database of 69 four-phase contrast-enhanced CT scans, consisting of six classes of liver lesions, and evaluated in terms of the precision-recall curve and the Bull's Eye Percentage Score (BEP). It obtained a BEP score of 78%. Compared with any single-phase based representation, the multiphase-based representation increased the BEP scores of the system, from 63%-65% to 78%. In a pilot study, two radiologists performed characterization of FLLs without and with the knowledge of the top five retrieved results. The results were evaluated in terms of the diagnostic accuracy, the receiver operating characteristic (ROC) curve and the mean diagnostic confidence. One radiologist's accuracy improved from 75% to 92%, the area under ROC curves (AUC) from 0.85 to 0.95 (p = 0.081), and the mean diagnostic confidence from 4.6 to 7.3 (p = 0.039). The second radiologist's accuracy did not change, at 75%, with AUC increasing from 0.72 to 0.75 (p = 0.709), and the mean confidence from 4.5 to 4.9 (p = 0.607). Conclusions: Multiphase CT images can be used in content-based image retrieval for FLL's categorization and result in good performance in comparison with single-phase CT images. The proposed method has the potential to improve the radiologists' diagnostic accuracy and confidence by providing visually similar lesions with confirmed diagnoses for their interpretation of clinical studies. © 2013 American Association of Physicists in Medicine. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1118/1.4820539 | |
dc.source | Scopus | |
dc.subject | Clinical decision support system | |
dc.subject | Focal liver lesion characterization | |
dc.subject | Multiphase image retrieval | |
dc.subject | Multiphase representation | |
dc.subject | Similarity query | |
dc.type | Article | |
dc.contributor.department | DIAGNOSTIC RADIOLOGY | |
dc.description.doi | 10.1118/1.4820539 | |
dc.description.sourcetitle | Medical Physics | |
dc.description.volume | 40 | |
dc.description.issue | 10 | |
dc.description.page | - | |
dc.description.coden | MPHYA | |
dc.identifier.isiut | 000325394400049 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
SCOPUSTM
Citations
17
checked on Jan 24, 2023
WEB OF SCIENCETM
Citations
13
checked on Jan 24, 2023
Page view(s)
161
checked on Jan 26, 2023
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.