Please use this identifier to cite or link to this item:
Title: Graphene versus multi-walled carbon nanotubes for electrochemical glucose biosensing
Authors: Zheng, D.
Vashist, S.K.
Dykas, M.M.
Saha, S.
Al-Rubeaan, K.
Lam, E.
Luong, J.H.T.
Sheu, F.-S. 
Keywords: Electrochemical glucose sensor
Glucose oxidase
Multi-walled carbon nanotubes
Issue Date: 2013
Citation: Zheng, D., Vashist, S.K., Dykas, M.M., Saha, S., Al-Rubeaan, K., Lam, E., Luong, J.H.T., Sheu, F.-S. (2013). Graphene versus multi-walled carbon nanotubes for electrochemical glucose biosensing. Materials 6 (3) : 1011-1027. ScholarBank@NUS Repository.
Abstract: A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx), with graphene or multi-walled carbon nanotubes (MWCNTs). Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES) and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs). The EDC (1-ethyl-(3-dimethylaminopropyl) carbodiimide)-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4-27.9 mM. However, the direct electron transfer (DET) between GOx and the modified GCE's surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart. © 2013 by the authors.
Source Title: Materials
ISSN: 19961944
DOI: 10.3390/ma6031011
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.