Please use this identifier to cite or link to this item:
Title: Effect of classical trapping in quantum chaos: An anomalous diffusion approach
Authors: Wang, J. 
Garcia-Garcia, A.M.
Keywords: Anomaolous diffusion
Cantori; localization
Kicked rotor
Quantum chaos
Issue Date: 10-Dec-2008
Citation: Wang, J., Garcia-Garcia, A.M. (2008-12-10). Effect of classical trapping in quantum chaos: An anomalous diffusion approach. International Journal of Modern Physics B 22 (30) : 5261-5277. ScholarBank@NUS Repository.
Abstract: We study generic effects on the quantum dynamics of classical trapping-leaking mechanism by investigating in detail the 2δ-kicked rotors whose classical phase space is partitioned into momentum cells separated by trapping regions which slow down the motion. We focus on a range of parameters where the dynamics is generic, namely, the phase space has no stable islands. As a consequence of the trapping-leaking mechanism, we show that the classical motion is described by a process of anomalous diffusion. We investigate in detail the impact of the underlying classical anomalous diffusion on the quantum dynamics with special emphasis on the phenomenon of dynamical localization. Based on the study of the quantum density of probability, its second moment and the return probability, we identify a region of weak dynamical localization where the quantum diffusion is still anomalous but the diffusion rate is slower than in the classical case. Moreover, we examine how other relevant time scales, such as the quantum-classical breaking time and the one related to the beginning of full dynamical localization, are modified by the classical anomalous diffusion. Finally, we discuss the relevance of our results for understanding the role of classical cantori in quantum mechanics. © 2008 World Scientific Publishing Company.
Source Title: International Journal of Modern Physics B
ISSN: 02179792
DOI: 10.1142/S0217979208049480
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jul 8, 2020

Page view(s)

checked on Jun 27, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.