Please use this identifier to cite or link to this item: https://doi.org/10.1243/09596518JSCE348
Title: Generalized robust H∞ fault diagnosis filtering based on conditional stochastic distributions of system outputs
Authors: Guo, L.
Zhang, Y. 
Keywords: B-spline expansions
Fault diagnosis
Non-linear systems
Robust filtering
Stochastic systems
Issue Date: 2007
Citation: Guo, L., Zhang, Y. (2007). Generalized robust H∞ fault diagnosis filtering based on conditional stochastic distributions of system outputs. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering 221 (6) : 857-864. ScholarBank@NUS Repository. https://doi.org/10.1243/09596518JSCE348
Abstract: The efficiency of fault detection and diagnosis by using output probability density functions (PDFs) for stochastic time-delayed systems has been shown in practical processes. Neural network modelling has been applied to characterize the output PDFs and to the dynamical weighting system. In this paper, the system perturbations and disturbance are considered and the robust fault diagnosis design is studied for the general stochastic system in the presence of time delays. The main objective is to design linear matrix inequality (LMI)-based fault diagnostic filtering (FDF) to estimate the fault and attenuate the disturbances. The modelling errors and system uncertainties resulting from both B-spline expansion and the weighting system are merged into system disturbance. It can be seen that the resulting weighting system comprises non-linearities, uncertainties, disturbances, and time delays, and includes the non-zero initial condition. The generalized H∞ optimization is presented and applied to the fault diagnosis problem of the weighting system with the non-zero initial condition and truncated norms. Simulations are given to demonstrate the efficiency of the proposed approach. © IMechE 2007.
Source Title: Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/116363
ISSN: 09596518
DOI: 10.1243/09596518JSCE348
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

12
checked on Apr 12, 2021

WEB OF SCIENCETM
Citations

11
checked on Apr 12, 2021

Page view(s)

92
checked on Apr 10, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.