Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.1832791
DC FieldValue
dc.titleAnomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels
dc.contributor.authorLi, B.
dc.contributor.authorWang, J.
dc.contributor.authorWang, L.
dc.contributor.authorZhang, G.
dc.date.accessioned2014-12-12T07:47:17Z
dc.date.available2014-12-12T07:47:17Z
dc.date.issued2005
dc.identifier.citationLi, B., Wang, J., Wang, L., Zhang, G. (2005). Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels. Chaos 15 (1) : -. ScholarBank@NUS Repository. https://doi.org/10.1063/1.1832791
dc.identifier.issn10541500
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/116229
dc.description.abstractWe study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is o 2(t)=2Dt α (0 < α ≤ 2), then the thermal conductivity can be expressed in terms of the system size L as K=cL β with β=2-2/α. This result predicts that a normal diffusion (a=l) implies a normal heat conduction obeying the Fourier law (β=0), a superdiffusion (α > 1) implies an anomalous heat conduction with a divergent thermal conductivity (β>0), and more interestingly, a subdiffusion (α < 1) implies an anomalous heat conduction with a convergent thermal conductivity (β < 0), consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our theoretical prediction. © 2005 American Institute of Physics.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1063/1.1832791
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.contributor.departmentTEMASEK LABORATORIES
dc.description.doi10.1063/1.1832791
dc.description.sourcetitleChaos
dc.description.volume15
dc.description.issue1
dc.description.page-
dc.identifier.isiut000229440100044
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.