Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICCA.2007.4376315
DC FieldValue
dc.titleA scaling LMI approach to output feedback control of discrete-time LTI systems
dc.contributor.authorXu, J.
dc.contributor.authorDe Souza, C.E.
dc.contributor.authorXie, L.
dc.date.accessioned2014-12-12T07:14:44Z
dc.date.available2014-12-12T07:14:44Z
dc.date.issued2008
dc.identifier.citationXu, J.,De Souza, C.E.,Xie, L. (2008). A scaling LMI approach to output feedback control of discrete-time LTI systems. 2007 IEEE International Conference on Control and Automation, ICCA : 42-46. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/ICCA.2007.4376315" target="_blank">https://doi.org/10.1109/ICCA.2007.4376315</a>
dc.identifier.isbn1424408180
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/115370
dc.description.abstractIn this paper, we propose a scaling linear matrix inequality (LMI) approach to static output feedback control of discrete-time linear time invariant (LTI) plants. Based on whether the system matrix B or C is full-rank, we provide several different methods with respect to the system state dimension, output dimension and input dimension. These methods require a preprocessing to transfer B or C to a special form. We show that these approaches actually can be treated as alternative and complemental methods for existing works. © 2007 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/ICCA.2007.4376315
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentTEMASEK LABORATORIES
dc.description.doi10.1109/ICCA.2007.4376315
dc.description.sourcetitle2007 IEEE International Conference on Control and Automation, ICCA
dc.description.page42-46
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on May 10, 2022

Page view(s)

185
checked on May 12, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.