Please use this identifier to cite or link to this item:
Title: Weak decoupling duality and quantum identification
Authors: Hayden, P.
Winter, A. 
Keywords: Identification capacity
quantum information
Shannon theory
Issue Date: 2012
Citation: Hayden, P., Winter, A. (2012). Weak decoupling duality and quantum identification. IEEE Transactions on Information Theory 58 (7) : 4914-4929. ScholarBank@NUS Repository.
Abstract: If a quantum system is subject to noise, it is possible to perform quantum error correction reversing the action of the noise if and only if no information about the system's quantum state leaks to the environment. In this paper, we develop an analogous duality in the case that the environment approximately forgets the identity of the quantum state, a weaker condition satisfied by Ε-randomizing maps and approximate unitary designs. Specifically, we show that the environment approximately forgets quantum states if and only if the original channel approximately preserves pairwise fidelities of pure inputs, an observation we call weak decoupling duality. Using this tool, we then go on to study the task of using the output of a channel to simulate restricted classes of measurements on a space of input states. The case of simulating measurements that test whether the input state is an arbitrary pure state is known as equality testing or quantum identification. An immediate consequence of weak decoupling duality is that the ability to perform quantum identification cannot be cloned. We, furthermore, establish that the optimal amortized rate at which quantum states can be identified through a noisy quantum channel is equal to the entanglement-assisted classical capacity of the channel, despite the fact that the task is quantum, not classical, and entanglement-assistance is not allowed. In particular, this rate is strictly positive for every nonconstant quantum channel, including classical channels. © 2012 IEEE.
Source Title: IEEE Transactions on Information Theory
ISSN: 00189448
DOI: 10.1109/TIT.2012.2191695
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 2, 2023


checked on Feb 2, 2023

Page view(s)

checked on Feb 2, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.