Please use this identifier to cite or link to this item: https://doi.org/10.1287/opre.2013.1255
Title: On the performance of sparse process structures in partial postponement production systems
Authors: Chou, M.C. 
Chua, G.A.
Zheng, H.
Issue Date: 2014
Citation: Chou, M.C., Chua, G.A., Zheng, H. (2014). On the performance of sparse process structures in partial postponement production systems. Operations Research 62 (2) : 348-365. ScholarBank@NUS Repository. https://doi.org/10.1287/opre.2013.1255
Abstract: Production postponement, the strategy to hold reserved production capacity that can be deployed based on actual demand signals, is often used to mitigate supply-demand mismatch risk. The effectiveness of this strategy depends crucially on the ease, or flexibility, in deploying the reserved capacity to meet product demands. Existing literature assumes that the reserved capacity is fully flexible, i.e., capable of being deployed to meet the demand of any item in a multiproduct system. Little is known if reserved capacity is held at many different locations, with each location having only a limited range of flexibility on production options. This paper examines how effective the production postponement strategy is in this environment. When the amount of reserved capacity is small (i.e., postponement level near 0%), no amount of flexibility can reap significant benefits. When the reserved capacity is high (i.e., postponement level near 100%), it is well known that a sparse structure such as a 2-chain can perform nearly as well as a fully flexible structure. Hence, process flexibility beyond 2-chain has little impact on the effectiveness of production postponement strategy in these two extreme environments. Interestingly, in a symmetric system, we prove that the performance of 2-chain, vis-à-vis the full flexibility structure, has a wider gap when postponement level (i.e., amount of reserved capacity) is moderate, and thus process flexibility beyond 2-chain matters and affects appreciably the performance of the production postponement strategy. Fortunately, adding a little more flexibility, say turning a 2-chain into a 3-chain, the system can perform almost as well as a full flexibility structure for all postponement levels. This is important as first stage production capacity can be allocated as if the reserve capacity is fully flexible. Our analysis hinges on an exact analytical expression for the performance of d-chain, obtained from solving a related class of random walk problems. To the best of our knowledge, this is the first paper with analytical results on the performance of d-chain for d >2. © 2014 INFORMS.
Source Title: Operations Research
URI: http://scholarbank.nus.edu.sg/handle/10635/114941
ISSN: 15265463
DOI: 10.1287/opre.2013.1255
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

6
checked on Sep 15, 2019

WEB OF SCIENCETM
Citations

5
checked on Sep 6, 2019

Page view(s)

47
checked on Sep 6, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.