Please use this identifier to cite or link to this item: https://doi.org/10.1109/TIT.2003.819339
DC FieldValue
dc.titleOn Constant-Composition Codes Over Z q
dc.contributor.authorLuo, Y.
dc.contributor.authorFu, F.-W.
dc.contributor.authorVinck, A.J.H.
dc.contributor.authorChen, W.
dc.date.accessioned2014-12-12T07:04:48Z
dc.date.available2014-12-12T07:04:48Z
dc.date.issued2003-11
dc.identifier.citationLuo, Y., Fu, F.-W., Vinck, A.J.H., Chen, W. (2003-11). On Constant-Composition Codes Over Z q. IEEE Transactions on Information Theory 49 (11) : 3010-3016. ScholarBank@NUS Repository. https://doi.org/10.1109/TIT.2003.819339
dc.identifier.issn00189448
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/114907
dc.description.abstractA constant-composition code is a special constant-weight code under the restriction that each symbol should appear a given number of times in each codeword. In this correspondence, we give a lower bound for the maximum size of the q-ary constant-composition codes with minimum distance at least 3. This bound is asymptotically optimal and generalizes the Graham-Sloane bound for binary constant-weight codes. In addition, three construction methods of constant-composition codes are presented, and a number of optimum constant-composition codes are obtained by using these constructions.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/TIT.2003.819339
dc.sourceScopus
dc.subjectCode construction
dc.subjectConstant-composition code
dc.subjectConstant-weight code
dc.subjectHadamard matrix
dc.subjectJohnson bound
dc.subjectPlotkin bound
dc.subjectSimplex code
dc.typeArticle
dc.contributor.departmentTEMASEK LABORATORIES
dc.description.doi10.1109/TIT.2003.819339
dc.description.sourcetitleIEEE Transactions on Information Theory
dc.description.volume49
dc.description.issue11
dc.description.page3010-3016
dc.description.codenIETTA
dc.identifier.isiut000186618500020
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

65
checked on Feb 2, 2023

WEB OF SCIENCETM
Citations

63
checked on Feb 2, 2023

Page view(s)

148
checked on Feb 2, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.