Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.acha.2008.01.001
DC FieldValue
dc.titleFoveated splines and wavelets
dc.contributor.authorGAO XIAOJIE
dc.contributor.authorGoodman, T.N.T.
dc.contributor.authorLee, S.L.
dc.date.accessioned2014-11-30T06:41:20Z
dc.date.available2014-11-30T06:41:20Z
dc.date.issued2008-11
dc.identifier.citationGAO XIAOJIE, Goodman, T.N.T., Lee, S.L. (2008-11). Foveated splines and wavelets. Applied and Computational Harmonic Analysis 25 (3) : 381-399. ScholarBank@NUS Repository. https://doi.org/10.1016/j.acha.2008.01.001
dc.identifier.issn10635203
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/113244
dc.description.abstractSpline wavelets on a hybrid of uniform and geometric meshes that admits a natural dyadic multiresolution structure are constructed. The construction is extended to other scaling functions. The hybrid splines and wavelets provide good approximation of functions near singularities and efficient representation of images with high resolution around regions of interest. © 2008 Elsevier Inc. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.acha.2008.01.001
dc.sourceScopus
dc.subjectFoveated approximation
dc.subjectGeometric splines
dc.subjectHybrid scaling functions and wavelets
dc.subjectPolynomial reproduction
dc.subjectRiesz basis
dc.subjectUniform B-splines
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.contributor.departmentRISK MANAGEMENT INSTITUTE
dc.description.doi10.1016/j.acha.2008.01.001
dc.description.sourcetitleApplied and Computational Harmonic Analysis
dc.description.volume25
dc.description.issue3
dc.description.page381-399
dc.description.codenACOHE
dc.identifier.isiut000260593900006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.