Please use this identifier to cite or link to this item: https://doi.org/10.1109/20.539222
DC FieldValue
dc.titleA new class of codes in lee metric and their application to error-correcting modulation codes
dc.contributor.authorKrachkovsky, V.Y.
dc.contributor.authorLee, Y.X.
dc.date.accessioned2014-11-28T06:49:40Z
dc.date.available2014-11-28T06:49:40Z
dc.date.issued1996
dc.identifier.citationKrachkovsky, V.Y., Lee, Y.X. (1996). A new class of codes in lee metric and their application to error-correcting modulation codes. IEEE Transactions on Magnetics 32 (5 PART 1) : 3935-3937. ScholarBank@NUS Repository. https://doi.org/10.1109/20.539222
dc.identifier.issn00189464
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/112683
dc.description.abstractA new class of t-error-correcting codes in Lee metric is proposed. For the new codes, unlike the BCH codes in Lee metric, the Galois field characteristic may be chosen independently of t and metric parameter Q. The proposed codes are applied for the bitshift error detection/correction in (d,k)-encoded binary data. The resulting fixed-length error-correcting/modulation co'de have a regular encoding and can be used for the constraints, imposed by any given FSTD. The 2-shift correcting codes are specially studied. It is shown that both for the finite lengths case and asymptotically these codes outperform the construction based on BCH codes. © 1996 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/20.539222
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentDATA STORAGE INSTITUTE
dc.description.doi10.1109/20.539222
dc.description.sourcetitleIEEE Transactions on Magnetics
dc.description.volume32
dc.description.issue5 PART 1
dc.description.page3935-3937
dc.description.codenIEMGA
dc.identifier.isiutA1996VM25800185
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Jun 8, 2021

Page view(s)

104
checked on Jun 7, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.