Please use this identifier to cite or link to this item:
Title: Electrospun composite nanofibers for tissue regeneration.
Authors: Prabhakaran, M.P. 
Ghasemi-Mobarakeh, L.
Ramakrishna, S.
Issue Date: Apr-2011
Citation: Prabhakaran, M.P., Ghasemi-Mobarakeh, L., Ramakrishna, S. (2011-04). Electrospun composite nanofibers for tissue regeneration.. Journal of nanoscience and nanotechnology 11 (4) : 3039-3057. ScholarBank@NUS Repository.
Abstract: Nanotechnology assists in the development of biocomposite nanofibrous scaffolds that can react positively to changes in the immediate cellular environment and stimulate specific regenerative events at molecular level to generate healthy tissues. Recently, electrospinning has gained huge momentum with greater accessibility of fabrication of composite, controlled and oriented nanofibers with sufficient porosity required for effective tissue regeneration. Current developments include the fabrication of nanofibrous scaffolds which can provide chemical, mechanical and biological signals to respond to the environmental stimuli. These nanofibers are fabricated by simple coating, blending of polymers/bioactive molecules or by surface modification methods. For obtaining optimized surface functionality, with specially designed architectures for the nanofibers (multi-layered, core-shell, aligned), electrospinning process has been modified and simultaneous 'electrospin-electrospraying' process is one of the most lately introduced technique in this perspective. Properties such as porosity, biodegradation and mechanical properties of composite electrospun nanofibers along with their utilization for nerve, cardiac, bone, skin, vascular and cartilage tissue engineering are discussed in this review. In order to locally deliver electrical stimulus and provide a physical template for cell proliferations, and to gain an external control on the level and duration of stimulation, electrically conducting polymeric nanofibers are also fabricated by electrospinning. Electrospun polypyrrole (PPy) and polyaniline (PAN) based scaffolds are the most extensively studied composite substrates for nerve and cardiac tissue engineering with or without electrical stimulations, and are discussed here. However, the major focus of ongoing and future research in regenerative medicine is to effectively exploit the pluripotent potential of Mesenchymal Stem Cell (MSC) differentiation on composite nanofibrous scaffolds for repair of organs.
Source Title: Journal of nanoscience and nanotechnology
ISSN: 15334880
DOI: 10.1166/jnn.2011.3753
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Nov 27, 2020


checked on Nov 19, 2020

Page view(s)

checked on Nov 21, 2020

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.