Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/111634
DC Field | Value | |
---|---|---|
dc.title | Robust stability analysis of linear systems with affine parameter uncertainties | |
dc.contributor.author | Yang, G.-H. | |
dc.contributor.author | Lum, K.-Y. | |
dc.date.accessioned | 2014-11-28T01:54:25Z | |
dc.date.available | 2014-11-28T01:54:25Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | Yang, G.-H.,Lum, K.-Y. (2005). Robust stability analysis of linear systems with affine parameter uncertainties. IFAC Proceedings Volumes (IFAC-PapersOnline) 16 : 535-540. ScholarBank@NUS Repository. | |
dc.identifier.isbn | 008045108X | |
dc.identifier.issn | 14746670 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/111634 | |
dc.description.abstract | This paper is concerned with the problem of robust stability of a class of uncertain linear systems, where the system state-matrices considered are affinely dependent on the uncertain parameters. Affine parameter-dependent Lyapunov functions are exploited to prove stability, and a robust stability criterion for the above class of systems to be affinely quadratically stable (AQS) is given in terms of linear matrix inequalities (LMIs). A comparison with the existing tests for AQS is given, and it is shown that the robust stability criterion provides a test that is not more conservative than the existing tests. Numerical examples are given to illustrate the results. Copyright © 2005 IFAC. | |
dc.source | Scopus | |
dc.subject | Linear matrix inequalities | |
dc.subject | Linear systems | |
dc.subject | Parameter uncertainty | |
dc.subject | Parameter-dependent lyapunov function | |
dc.subject | Robust stability | |
dc.type | Conference Paper | |
dc.contributor.department | TEMASEK LABORATORIES | |
dc.description.sourcetitle | IFAC Proceedings Volumes (IFAC-PapersOnline) | |
dc.description.volume | 16 | |
dc.description.page | 535-540 | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.