Please use this identifier to cite or link to this item:
Title: Interactions between Notch- and hypoxia-induced transcriptomes in embryonic stem cells
Authors: Main, H.
Lee, K.L. 
Yang, H.
Haapa-Paananen, S.
Edgren, H.
Jin, S.
Sahlgren, C.
Kallioniemi, O.
Poellinger, L. 
Lim, B.
Lendahl, U.
Keywords: CSL
ES cell
Gamma secretase
Issue Date: May-2010
Citation: Main, H., Lee, K.L., Yang, H., Haapa-Paananen, S., Edgren, H., Jin, S., Sahlgren, C., Kallioniemi, O., Poellinger, L., Lim, B., Lendahl, U. (2010-05). Interactions between Notch- and hypoxia-induced transcriptomes in embryonic stem cells. Experimental Cell Research 316 (9) : 1610-1624. ScholarBank@NUS Repository.
Abstract: Interaction between key signaling mechanisms is important to generate the diversity in signaling output required for proper control of cellular differentiation and function, although the molecular manifestations of such cross-talk are only partially understood. Notch signaling and the cellular response to hypoxia intersect at different points in the signaling cascades, and in this report we analyze the consequences of this cross-talk at the transcriptome level. Mouse ES cells were subjected to various combinations of hypoxia and/or activated Notch signaling, and the transcriptome changes could be grouped into different categories, reflecting various modes of hypoxia and Notch signaling integration. Two principal categories of novel Notch- and hypoxia-induced genes were identified: (i) a larger set of Notch or hypoxic target genes which were induced by one pathway and not significantly affected by the activity status of the other pathway and (ii) a smaller set of genes co-regulated by Notch and hypoxia. In the latter category, we identified genes that were induced by hypoxia and the expression of which was enhanced by active Notch signaling and another group of genes that were induced by Notch and hypoxia independently. Several of the hypoxia- and Notch-induced genes were found to be upregulated in various forms of cancer. Identification of genes co-regulated by the two pathways may provide a molecular platform to better understand the intersection between the two signaling cascades in normal development and cancer. © 2010 Elsevier Inc.
Source Title: Experimental Cell Research
ISSN: 00144827
DOI: 10.1016/j.yexcr.2009.12.012
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 26, 2023


checked on Jan 26, 2023

Page view(s)

checked on Jan 26, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.