Please use this identifier to cite or link to this item: https://doi.org/10.1186/1479-5876-9-47
Title: Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs
Authors: Chen, T.S.
Arslan, F.
Yin, Y.
Tan, S.S.
Lai, R.C.
Choo, A.B.H.
Padmanabhan, J.
Lee, C.N.
de Kleijn, D.P.V.
Lim, S.K. 
Issue Date: 25-Apr-2011
Citation: Chen, T.S., Arslan, F., Yin, Y., Tan, S.S., Lai, R.C., Choo, A.B.H., Padmanabhan, J., Lee, C.N., de Kleijn, D.P.V., Lim, S.K. (2011-04-25). Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. Journal of Translational Medicine 9 : -. ScholarBank@NUS Repository. https://doi.org/10.1186/1479-5876-9-47
Abstract: Background: Exosomes or secreted bi-lipid vesicles from human ESC-derived mesenchymal stem cells (hESC-MSCs) have been shown to reduce myocardial ischemia/reperfusion injury in animal models. However, as hESC-MSCs are not infinitely expansible, large scale production of these exosomes would require replenishment of hESC-MSC through derivation from hESCs and incur recurring costs for testing and validation of each new batch. Our aim was therefore to investigate if MYC immortalization of hESC-MSC would circumvent this constraint without compromising the production of therapeutically efficacious exosomes.Methods: The hESC-MSCs were transfected by lentivirus carrying a MYC gene. The transformed cells were analyzed for MYC transgene integration, transcript and protein levels, and surface markers, rate of cell cycling, telomerase activity, karyotype, genome-wide gene expression and differentiation potential. The exosomes were isolated by HPLC fractionation and tested in a mouse model of myocardial ischemia/reperfusion injury, and infarct sizes were further assessed by using Evans' blue dye injection and TTC staining.Results: MYC-transformed MSCs largely resembled the parental hESC-MSCs with major differences being reduced plastic adherence, faster growth, failure to senesce, increased MYC protein expression, and loss of in vitro adipogenic potential that technically rendered the transformed cells as non-MSCs. Unexpectedly, exosomes from MYC-transformed MSCs were able to reduce relative infarct size in a mouse model of myocardial ischemia/reperfusion injury indicating that the capacity for producing therapeutic exosomes was preserved.Conclusion: Our results demonstrated that MYC transformation is a practical strategy in ensuring an infinite supply of cells for the production of exosomes in the milligram range as either therapeutic agents or delivery vehicles. In addition, the increased proliferative rate by MYC transformation reduces the time for cell production and thereby reduces production costs. © 2011 Chen et al; licensee BioMed Central Ltd.
Source Title: Journal of Translational Medicine
URI: http://scholarbank.nus.edu.sg/handle/10635/108363
ISSN: 14795876
DOI: 10.1186/1479-5876-9-47
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2011-enabling_robust_scalable_manufacturing_process-published.pdf1.32 MBAdobe PDF

OPEN

PublishedView/Download

SCOPUSTM   
Citations

152
checked on Apr 7, 2020

WEB OF SCIENCETM
Citations

142
checked on Mar 30, 2020

Page view(s)

145
checked on Mar 28, 2020

Download(s)

6
checked on Mar 28, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.