Please use this identifier to cite or link to this item: https://doi.org/10.1002/pmic.200700062
DC FieldValue
dc.titleLearning the drug target-likeness of a protein
dc.contributor.authorXu, H.
dc.contributor.authorXu, H.
dc.contributor.authorLin, M.
dc.contributor.authorWang, W.
dc.contributor.authorLi, Z.
dc.contributor.authorHuang, J.
dc.contributor.authorChen, Y.
dc.contributor.authorChen, X.
dc.date.accessioned2014-10-29T01:55:06Z
dc.date.available2014-10-29T01:55:06Z
dc.date.issued2007-12
dc.identifier.citationXu, H., Xu, H., Lin, M., Wang, W., Li, Z., Huang, J., Chen, Y., Chen, X. (2007-12). Learning the drug target-likeness of a protein. Proteomics 7 (23) : 4255-4263. ScholarBank@NUS Repository. https://doi.org/10.1002/pmic.200700062
dc.identifier.issn16159853
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/106109
dc.description.abstractCurrent drug discovery and development approaches rely extensively on the identification and validation of appropriate targets; for example, those with marketable and robust therapeutics. Wide-ranging efforts have been directed at this problem and various approaches have been developed to identify disease-associated genes as candidates. In this work, we show with statistical significance that successful drug targets, in addition to their linkage to disease, share common characteristics that are disease-independent. For example, marked differences in functional category, tissue specificity, and sequence variability are observed between known targets and average proteins. These results lead to an interesting hypothesis: potentially good drug targets shall have some desired properties, which we refer to as "drug target-likeness" that are beyond their disease-associations. Because of the limited availability of comprehensive protein characteristics data, we tried to learn the drug target-likeness property at the sequence level. Results show that a support vector machine model is able to accurately distinguish targets from non-targets entirely with sequence features. It is our hope that these encouraging results will invite future systematic proteomic scale experiments to gather necessary protein characteristics data for the accurate and predictive definition of "drug target-likeness", providing a new perspective toward understanding and pursuing effective therapeutics. © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1002/pmic.200700062
dc.sourceScopus
dc.subjectDrug target
dc.subjectDrug target-likeness
dc.subjectProtein features
dc.subjectStatistical learning
dc.subjectSupport vector machine
dc.typeArticle
dc.contributor.departmentPHARMACY
dc.description.doi10.1002/pmic.200700062
dc.description.sourcetitleProteomics
dc.description.volume7
dc.description.issue23
dc.description.page4255-4263
dc.description.codenPROTC
dc.identifier.isiut000251664400005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.