Please use this identifier to cite or link to this item: https://doi.org/10.1198/016214508000000418
DC FieldValue
dc.titleSliced regression for dimension reduction
dc.contributor.authorWang, H.
dc.contributor.authorXia, Y.
dc.date.accessioned2014-10-28T05:15:16Z
dc.date.available2014-10-28T05:15:16Z
dc.date.issued2008-06
dc.identifier.citationWang, H., Xia, Y. (2008-06). Sliced regression for dimension reduction. Journal of the American Statistical Association 103 (482) : 811-821. ScholarBank@NUS Repository. https://doi.org/10.1198/016214508000000418
dc.identifier.issn01621459
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105372
dc.description.abstractA new dimension-reduction method involving slicing the region of the response and applying local kernel regression to each slice is proposed. Compared with the traditional inverse regression methods [e.g., sliced inverse regression (SIR)], the new method is free of the linearity condition and has much better estimation accuracy. Compared with the direct estimation methods (e.g., MAVE), the new method is much more robust against extreme values and can capture the entire central subspace (CS) exhaustively. To determine the CS dimension, a consistent cross-validation criterion is developed. Extensive numerical studies, including a real example, confirm our theoretical findings. © 2008 American Statistical Association.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1198/016214508000000418
dc.sourceScopus
dc.subjectCross-validation
dc.subjectEarnings forecast
dc.subjectMinimum average variance estimation
dc.subjectSliced inverse regression
dc.subjectSufficient dimension reduction
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1198/016214508000000418
dc.description.sourcetitleJournal of the American Statistical Association
dc.description.volume103
dc.description.issue482
dc.description.page811-821
dc.identifier.isiut000257897500038
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.