Please use this identifier to cite or link to this item:
Title: Robust estimation in capital asset pricing model
Authors: Wong, W.-K.
Bian, G. 
Keywords: Bayesian Estimate
Capital Asset Pricing Model
Cauchy-type g-prior
Flat-tailed Distribution
Least Squares Estimate
Issue Date: 2000
Citation: Wong, W.-K.,Bian, G. (2000). Robust estimation in capital asset pricing model. Journal of Applied Mathematics and Decision Sciences 4 (1) : 65-82. ScholarBank@NUS Repository.
Abstract: Bian and Dickey (1996) developed a robust Bayesian estimator for the vector of regression coefficients using a Cauchy-type g-prior. This estimator is an adaptive weighted average of the least squares estimator and the prior location, and is of great robustness with respect to flat-tailed sample distribution. In this paper, we introduce the robust Bayesian estimator to the estimation of the Capital Asset Pricing Model (CAPM) in which the distribution of the error component is well-known to be flat-tailed. To support our proposal, we apply both the robust Bayesian estimator and the least squares estimator in the simulation of the CAPM and in the analysis of the CAPM for US annual and monthly stock returns. Our simulation results show that the Bayesian estimator is robust and superior to the least squares estimator when the CAPM is contaminated by large normal and/or non-normal disturbances, especially by Cauchy disturbances. In our empirical study, we find that the robust Bayesian estimate is uniformly more efficient than the least squares estimate in terms of the relative efficiency of one-step ahead forecast mean square error, especially for small samples. © Journal of Applied Mathematics & Decision Sciences.
Source Title: Journal of Applied Mathematics and Decision Sciences
ISSN: 11739126
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on May 12, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.