Please use this identifier to cite or link to this item:
https://doi.org/10.1023/A:1022423429880
Title: | On the ranked-set sampling M-estimates for symmetric location families | Authors: | Zhao, X. Chen, Z. |
Keywords: | Asymptotic normality Asymptotic relative efficiency M-estimates Optimal sampling design Ranked-set sampling Robustness |
Issue Date: | 2002 | Citation: | Zhao, X., Chen, Z. (2002). On the ranked-set sampling M-estimates for symmetric location families. Annals of the Institute of Statistical Mathematics 54 (3) : 626-640. ScholarBank@NUS Repository. https://doi.org/10.1023/A:1022423429880 | Abstract: | The ranked-set sampling (RSS) is applicable in practical problems where the variable of interest for an observed item is costly or time-consuming but the ranking of a set of items according to the variable can be easily done without actual measurement. In this article, the M-estimates of location parameters using RSS data are studied. We deal mainly with symmetric location families. The asymptotic properties of M-estimates based on ranked-set samples are established. The properties of unbalanced ranked-set sample M-estimates are employed to develop the methodology for determining optimal ranked-set sampling schemes. The asymptotic relative efficiencies of ranked-set sample M-estimates are investigated. Some simulation studies are reported. | Source Title: | Annals of the Institute of Statistical Mathematics | URI: | http://scholarbank.nus.edu.sg/handle/10635/105280 | ISSN: | 00203157 | DOI: | 10.1023/A:1022423429880 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.