Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0026-2714(99)00085-2
DC FieldValue
dc.titleMaximum likelihood predictive densities for the inverse Gaussian distribution with applications to reliability and lifetime predictions
dc.contributor.authorYang, Z.
dc.date.accessioned2014-10-28T05:13:04Z
dc.date.available2014-10-28T05:13:04Z
dc.date.issued1999-09
dc.identifier.citationYang, Z. (1999-09). Maximum likelihood predictive densities for the inverse Gaussian distribution with applications to reliability and lifetime predictions. Microelectronics Reliability 39 (9) : 1413-1421. ScholarBank@NUS Repository. https://doi.org/10.1016/S0026-2714(99)00085-2
dc.identifier.issn00262714
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/105215
dc.description.abstractMaximum likelihood predictive densities (MLPD) for the inverse Gaussian distribution are derived for the cases of one or both parameters unknown. They are then applied to obtain estimators of the reliability function and prediction or shortest prediction intervals for a future observation. Comparisons with the existing likelihood or frequentist methods show that the MLPD estimators of reliability gives smaller bias and smaller MSE for a wide range of population values, and that the MLPD prediction intervals are shorter while preserving the correct coverage probability. The shortest MLPD prediction intervals further sharpen the above equitailed MLPD intervals in terms of interval lengths.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0026-2714(99)00085-2
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1016/S0026-2714(99)00085-2
dc.description.sourcetitleMicroelectronics Reliability
dc.description.volume39
dc.description.issue9
dc.description.page1413-1421
dc.description.codenMCRLA
dc.identifier.isiut000083659500012
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.